Recherchez sur tout Techno-Science.net
       
Techno-Science.net : Suivez l'actualité des sciences et des technologies, découvrez, commentez
Catégories
Techniques
Sciences
Encore plus...
Techno-Science.net
Partenaires
Organismes
 CEA
 ESA
Sites Web
Photo Mystérieuse

Que représente
cette image ?
 A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | +
Antécédent (mathématiques)

Définition

En mathématiques, étant donnés deux ensembles non vides E, F et une application \ f : E \to F, on appelle antécédent (par f) d'un élément y de F tout élément x de E tel que \ f (x) = y.

Un antécédent est donc, par définition (Une définition est un discours qui dit ce qu'est une chose ou ce que signifie un nom. D'où la division entre les définitions réelles et les définitions nominales.), un élément de l'image réciproque (L'image réciproque d'une partie B d'un ensemble Y par une application est le sous-ensemble de X constitué des éléments dont l'image par f appartient à B : .) \ f^{-1}(\{y\}).

Exemples

  • Soient la fonction \ f : \R \to \R,\, x \mapsto x^2 et y un réel.
Si y > 0, y admet deux antécédents, qui sont \ \sqrt{y} et \ -\sqrt{y}
Si y = 0, y admet un seul antécédent, qui est 0
Si y < 0, y n'admet aucun antécédent
  • Soient E un ensemble (En théorie des ensembles, un ensemble désigne intuitivement une collection d’objets (les éléments de l'ensemble), « une multitude qui peut être comprise...) non vide (Le vide est ordinairement défini comme l'absence de matière dans une zone spatiale.), et une application \ f : E \to \mathcal{P}(E), où \ \mathcal{P}(E) désigne l'ensemble des parties de E. On définit \ Y = \{x \in E\, /\, x \notin f(x)\} : Y est une partie de E, autrement dit un élément de l'ensemble \ \mathcal{P}(E).
Cet élément n'admet aucun antécédent par f. En effet, supposons qu'un tel antécédent \ x_0 \in E existe. On a donc \ f (x_0) = Y.
Deux cas sont possibles :
\ x_0 \in Y, ce qui veut dire (par définition de Y) que \ x_0 \notin f(x_0), ou \ x_0 \notin Y
\ x_0 \notin Y, ce qui veut dire (par définition de Y) que \ x_0 \in f(x_0), ou \ x_0 \in Y
Dans les deux cas, on aboutit à une contradiction (Une contradiction existe lorsque deux affirmations, idées, ou actions s'excluent mutuellement.), ce qui prouve par l'absurde que Y n'a pas d'antécédent (cf. l'argument de la diagonale de Cantor).

Image d'un ensemble par une application

Soient une application \ f : E \to F et A un sous-ensemble (En mathématiques, un ensemble A est un sous-ensemble ou une partie d’un ensemble B, ou encore B est sur-ensemble de A, si tout élément du sous-ensemble A est aussi élément du sur-ensemble B. Il peut par...) de E. On appelle image de A par f l'ensemble des éléments y de F qui admettent au moins un antécédent appartenant à A ; on la note \ f (A):

\ f (A) = \{y \in F\,/\, \exists\, x \in A, y = f(x)\}.

En particulier, l'image de E par f, appelée image de f, est l'ensemble des éléments y de F qui admettent au moins un antécédent :

\ f (E) = \{y \in F\,/\, \exists\, x \in E, y = f(x)\}.

Injections, surjections, bijections

Soit une application \ f : E \to F.

  • On dit que f est injective, ou que c'est une injection (Le mot injection peut avoir plusieurs significations :), si tout (Le tout compris comme ensemble de ce qui existe est souvent interprété comme le monde ou l'univers.) élément de F admet au plus un antécédent.
  • On dit que f est surjective, ou que c'est une surjection (Une fonction est dite surjective ou est une surjection si pour tout y dans l'ensemble d'arrivée Y, il existe au moins un élément x de la source X tel que...), si tout élément de F admet au moins un antécédent, c'est-à-dire si
\ f (E) = F.
  • On dit que f est bijective, ou que c'est une bijection (Une fonction f: X → Y est dite bijective ou est une bijection si pour tout y dans l’ensemble d'arrivée Y il existe un et un seul x dans l’ensemble de définition X tel que f(x) = y. On dit encore...), si tout élément de F admet un antécédent et un seul, c'est-à-dire si f est à la fois injective et surjective.
Dans ce cas, on peut définir l'application \ f^{-1} : F \to E, y \mapsto x, où x est l'unique antécédent de y par f. C'est aussi une bijection, dite réciproque de f.

(l'exemple vu plus haut montre qu'il n'existe aucune application surjective \ f : E \to \mathcal{P}(E)).

Source: Wikipédia publiée sous licence CC-BY-SA 3.0.

Vous pouvez soumettre une modification à cette définition sur cette page. La liste des auteurs de cet article est disponible ici.