Recherchez sur tout Techno-Science.net
       
Techno-Science.net : Suivez l'actualité des sciences et des technologies, découvrez, commentez
Catégories
Techniques
Sciences
Encore plus...
Techno-Science.net
Photo Mystérieuse

Que représente
cette image ?
 A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | +
Chaleur

Dans le langage courant, les mots chaleur et température ont souvent un sens équivalent : Quelle chaleur !

La chaleur dans le sens commun a longtemps été confondue avec la notion de température, car à pression constante, c'est une fonction croissante de la température : par exemple tous les corps purs dans l'état solide, liquide (La phase liquide est un état de la matière. Sous cette forme, la matière est facilement déformable mais difficilement compressible.) ou gazeux ont une capacité calorifique (La capacité thermique (ou capacité calorifique) d'un corps est une grandeur permettant de quantifier la possibilité qu'a un corps d'absorber ou restituer de l'énergie par échange thermique au cours d'une transformation pendant laquelle sa...) molaire à pression (La pression est une notion physique fondamentale. On peut la voir comme une force rapportée à la surface sur laquelle elle s'applique.) constante CP(T), positive. Dans ces conditions, comme à l'air (L'air est le mélange de gaz constituant l'atmosphère de la Terre. Il est inodore et incolore. Du fait de la diminution de la pression de l'air avec l'altitude, il...) libre la pression est quasi-constante P ≈ 1,013 25·105 pascals, chauffer un corps engendre une élévation de sa température (La température est une grandeur physique mesurée à l'aide d'un thermomètre et étudiée en thermométrie. Dans la vie courante, elle est reliée aux sensations...). Mais cela n'est pas toujours vrai notamment lors d'un changement d'état physique (La physique (du grec φυσις, la nature) est étymologiquement la « science de la nature ». Dans un...): quand on chauffe de la glace (La glace est de l'eau à l'état solide.), elle fond à 0°C sous la pression d'une atmosphère (Le mot atmosphère peut avoir plusieurs significations :), à température constante. Il y a dans ce cas, apport de chaleur (Dans le langage courant, les mots chaleur et température ont souvent un sens équivalent : Quelle chaleur !) sans augmentation de température.

Au XIXe siècle, la chaleur est assimilée à un "fluide (Un fluide est un milieu matériel parfaitement déformable. On regroupe sous cette appellation les gaz qui sont l'exemple des fluides compressibles, et les liquides, qui sont des fluides peu compressibles. Dans certaines...)": le calorique. Les progrès et les succès de la calorimétrie (La calorimétrie est la partie de la thermodynamique qui a pour objet la mesure des quantités de chaleur. On utilise pour cela un calorimètre. Celui-ci peut fonctionner soit à pression constante et dans ce cas les chaleurs mises en...) imposent cette théorie (Le mot théorie vient du mot grec theorein, qui signifie « contempler, observer, examiner ». Dans le langage courant, une théorie est une idée ou une connaissance spéculative, souvent basée sur...) jusqu'à la fin du XIXe siècle. Cette conception est en effet reprise par Sadi Carnot : un moteur (Un moteur (du latin mōtor : « celui qui remue ») est un dispositif qui déplace de la matière en apportant de la puissance. Il effectue ce travail à partir d'une énergie (éolienne, chimique,...) thermique (La thermique est la science qui traite de la production d'énergie, de l'utilisation de l'énergie pour la production de chaleur ou de froid, et des transferts de chaleur suivant différents phénomènes...) ne peut fonctionner que si la chaleur circule d'un corps dont la température est plus élevée vers un corps dont la température est plus froide; raisonnement correspondant à une analogie avec une machine hydraulique (L'hydraulique désigne la branche de la physique qui étudie les liquides. En tant que telle, les champs d'investigation qu'elle propose regroupent plusieurs domaines :) qui tire son énergie (Dans le sens commun l'énergie désigne tout ce qui permet d'effectuer un travail, fabriquer de la chaleur, de la lumière, de produire un mouvement.) du passage de l'eau (L’eau est un composé chimique ubiquitaire sur la Terre, essentiel pour tous les organismes vivants connus.) d'un réservoir d'altitude (L'altitude est l'élévation verticale d'un lieu ou d'un objet par rapport à un niveau de base. C'est une des composantes géographique et biogéographique...) élevée vers un réservoir d'altitude inférieure.

Ce n'est qu'avec l'avènement de la thermodynamique (On peut définir la thermodynamique de deux façons simples : la science de la chaleur et des machines thermiques ou la science des grands systèmes en équilibre. La première définition est aussi la première dans l'histoire. La seconde est...) statistique (Une statistique est, au premier abord, un nombre calculé à propos d'un échantillon. D'une façon générale, c'est le résultat de l'application d'une...), que la chaleur sera définie comme un transfert de l'agitation (L’agitation est l'opération qui consiste à mélanger une phase ou plusieurs pour rendre une ou plusieurs de ces caractéristiques homogènes. Plusieurs types d'opérations liées à l'agitation...) thermique des particules au niveau microscopique. Un système dont les particules sont statistiquement plus agitées présentera une température d'équilibre, définie à l'échelle macroscopique, plus élevée. La température est donc une grandeur macroscopique qui est le reflet (Un reflet est, en physique, l'image virtuelle formée par la réflexion spéculaire d'un objet sur une surface. La nature spéculaire de la...) statistique des énergies cinétiques des particules à l'échelle microscopique. Au cours de chocs aléatoires, les particules les plus agitées transmettent leur énergies cinétiques aux particules les moins agitées. Le bilan de ces transferts d'énergies cinétiques microscopiques correspond à la chaleur échangée entre des systèmes constitués de particules dont l'agitation thermique moyenne (La moyenne est une mesure statistique caractérisant les éléments d'un ensemble de quantités : elle exprime la grandeur qu'auraient chacun des membres de l'ensemble...) est différente (En mathématiques, la différente est définie en théorie algébrique des nombres pour mesurer l'éventuel défaut de dualité d'une...).

La température est donc une fonction d'état intensive d'un système thermodynamique définie exclusivement à l'échelle macroscopique. En revanche, la chaleur est un transfert d'agitation thermique qui par nature est désordonné. La chaleur n'est pas une fonction d'état mais une grandeur dépendant de la nature de la transformation mise en jeu.

De plus, il est clair que le transfert ne peut se faire que dans le sens (SENS (Strategies for Engineered Negligible Senescence) est un projet scientifique qui a pour but l'extension radicale de l'espérance de vie humaine. Par une...) des particules statistiquement les plus agitées vers les particules statistiquement les moins agitées; c'est à dire que la chaleur ne peut passer (Le genre Passer a été créé par le zoologiste français Mathurin Jacques Brisson (1723-1806) en 1760.) que du système le plus chaud vers le système le plus froid (Le froid est la sensation contraire du chaud, associé aux températures basses.). Cette hypothèse est confirmée par le second principe de la thermodynamique qui introduit la fonction d'état entropie (En thermodynamique, l'entropie est une fonction d'état introduite au milieu du XIXe siècle par Rudolf Clausius dans le cadre du second principe,...).

Chaleur et thermodynamique

Le premier principe et la chaleur

Le premier principe de la thermodynamique est un principe de conservation de l'énergie. Il introduit la fonction d'état d'équilibre: U énergie interne (En France, ce nom désigne un médecin, un pharmacien ou un chirurgien-dentiste, à la fois en activité et en formation à l'hôpital ou en...).

Au cours d'une transformation d'un système thermodynamique fermé, la variation de l'énergie interne U(B) - U(A) est due soit à :

  • la réalisation d'un travail macroscopique W(AB), en général le travail des forces de pression, ∫-pdV.
  • la mise en jeu d'un transfert d'énergies microscopiques ou chaleur, Q(AB), lors de la transformation .

ΔU = U(B) - U(A) = Q + W

On en déduit donc une définition (Une définition est un discours qui dit ce qu'est une chose ou ce que signifie un nom. D'où la division entre les définitions réelles et les définitions nominales.) formelle de la chaleur:

Q(A → B) = U(B)- U(A) - W(A → B) Suivant un chemin bien défini allant de A à B

Si l'on insiste sur cette expression définissant le chemin, c'est que l'intégrale (Une intégrale est le résultat de l'opération mathématique, effectuée sur une fonction, appelé intégration. Une intégrale est donc composée d'un intégrande (la fonction à intégrer) et d'un opérateur que l'on...) curviligne permettant le calcul du travail des forces de pression (∫ -p.dV), n'est pas indépendante du chemin suivi pour aller de A vers B car le travail n'est pas une fonction d'état.

Il s'ensuit également que La chaleur n'est pas une fonction d'état et donc qu'elle dépend du chemin suivi.

Néanmoins dans certaines conditions expérimentales, la chaleur mise en jeu est égale à la variation d'une fonction d'état. C'est le cas pour une transformation d'un système fermé, effectuée soit à volume (Le volume, en sciences physiques ou mathématiques, est une grandeur qui mesure l'extension d'un objet ou d'une partie de l'espace.) constant: ΔU = QV ( voir énergie interne), soit à pression constante: ΔH = QP ( voir enthalpie). Cette propriété est mise à profit dans la calorimétrie effectuée dans un calorimètre fonctionnant soit à pression constante soit à volume constant dans le cas d'une bombe calorimétrique.

Le second principe et la chaleur

Le second principe de la thermodynamique est un principe d'évolution. Il introduit la fonction d'état entropie qui est une mesure du désordre de la matière (La matière est la substance qui compose tout corps ayant une réalité tangible. Ses trois états les plus communs sont l'état solide, l'état liquide, l'état gazeux. La matière...). Toute transformation réelle spontanée doit accroître le désordre global et se traduire donc par un phénomène de création d'entropie. La fonction entropie est définie à l'échelle macroscopique de telle sorte que sa variation au cours de la transformation d'un système, correspond au rapport de la quantité (La quantité est un terme générique de la métrologie (compte, montant) ; un scalaire, vecteur, nombre d’objets ou d’une autre manière de dénommer la valeur d’une collection ou un groupe de choses.) de chaleur échangée avec le milieu extérieur sur la température du système:

dS = δQrév / T (l'égalité suppose ici que la transformation est réversible: voir le second principe ).

d'où : δQrév = T.dS

Et pour une transformation finie à T constante, allant d'un état(A) à un état(B) d'équilibre:

Qrév = T.ΔS = T.(SB - SA)

La chaleur est donc associée à la notion d'entropie. Plus il y a création d'entropie, plus la transformation est irréversible et plus le travail utile récupéré sera faible ( voir entropie). C'est ce qui justifie le qualificatif donné à la chaleur d'être une forme dégradée de l'énergie ( voir Travail et chaleur).

Calcul de la quantité de chaleur mise en jeu lors d'une transformation affectant un corps pur (En chimie, un corps pur est composé d'un seul type de constituant (contraire : mélange). Il existe plusieurs types de corps purs.)

Les grandeurs thermodynamiques d'une quantité déterminée de corps pur ( n constant ) ne dépendent que de deux variables indépendantes.

Deux fonctions d'état introduites par le premier principe sont reliées à la chaleur sous certaines contraintes: V=cte ou P=cte.

  • À volume constant on choisit la fonction d'état énergie interne.

Fonction d'état énergie interne: U(T,V)

Sa différentielle est égale à:

dU = (\frac{\partial U}{\partial T}) dT+ (\frac{\partial U}{\partial V}) dV = \delta Q  + \delta W = \delta Q - P.dV

Si V = cte

dU = (\frac{\partial U}{\partial T})_V dT = \delta Q_V

la grandeur (\frac{\partial U}{\partial T})_V est la capacité calorifique molaire à volume constant, appelée C_V ~ et qui s'exprime en J.K-1.mol-1.

La chaleur mise en jeu pour une mole est donc égale à:

\delta Q_V = (\frac{\partial U}{\partial T})_V dT = C_V dT

Pour n moles

\delta Q_V = n C_V dT ~

Enfin pour une transformation isochore (La transformation d'un système (qui peut être solide, liquide, gazeux,...) est dite isochore si le volume du système ne change pas au cours de cette transformation.) allant de l'état A défini par TA à un état B défini par TB

Q_V  = \int_{T_A}^{T_B} {nC_V dT}

C_V~ est fonction de T. Mais si l'intervalle de T n'est pas trop grand ( quelques dizaines voire centaines de degrés), on peut la considérer en première approximation (Une approximation est une représentation grossière c'est-à-dire manquant de précision et d'exactitude, de quelque chose, mais encore assez significative pour être utile. Bien qu'une approximation...) comme constante.

d'où:

\Delta U = Q_V = nC_V \Delta T ~
  • À pression constante on choisit la fonction d'état enthalpie (L'enthalpie (du préfixe en- et du grec thalpein: chauffer) est une fonction d'état de la thermodynamique, dont la variation permet d'exprimer la quantité de...).

Fonction d'état enthalpie: H(T,P)

Sa différentielle est égale:

dH = (\frac{\partial H}{\partial T}) dT + (\frac{\partial H}{\partial P}) dP = \delta Q  + VdP

Si P = cte

dH = (\frac{\partial H}{\partial T})_P dT = \delta Q_P

la grandeur (\frac{\partial H}{\partial T})_P est la capacité calorifique molaire à pression constante, appelée C_P ~ et qui s'exprime en J.K-1.mol-1.

La chaleur mise en jeu pour une mole est donc égale à:

\delta Q_P = (\frac{\partial H}{\partial T})_P dT = C_P dT

Pour n moles

\delta Q_P = n C_P dT ~

Enfin pour une transformation isobare allant de l'état A défini par TA à un état B défini par TB

Q_P  = \int_{T_A}^{T_B} {nC_P dT}

C_P~ est fonction de T. Mais si l'intervalle de T n'est pas trop grand ( quelques dizaines voire centaines de degrés), on peut la considérer en première approximation comme constante.

d'où:

\Delta H = Q_P = nC_P \Delta T ~
  • Cas du changement d'état physique.

Généralement on considère le changement d'état physique effectué à l'air libre c'est à dire à pression constante (pression atmosphérique). Tout (Le tout compris comme ensemble de ce qui existe est souvent interprété comme le monde ou l'univers.) le monde (Le mot monde peut désigner :) sait que la glace fond à 0°C sous la pression atmosphérique (La pression atmosphérique est la pression de l'air en un point quelconque d'une atmosphère.) et tant qu'il y a coexistence de la glace et de l'eau liquide, la température reste constante. Le changement d'état d'un corps pur s'effectue donc à P = Cte et T = Cte. La chaleur mise en jeu correspond donc à une variation d'enthalpie: ΔH puisque la pression est constante. On l'appelle encore chaleur latente (L'enthalpie de changement d'état, molaire ou massique, correspond à la quantité de chaleur nécessaire à l'unité de quantité de matière (mole) ou de masse (kg) d'un corps pour qu'il change d'état; cette transformation...) molaire de changement d'état: L.

Q_P = \Delta H = n L ~

Pour en savoir plus ( rédaction à revoir )

L'expression infinitésimale du premier principe pour deux états voisins est :

Soit U(V,T) l'expression analytique de l'énergie interne U, alors sa différentielle est définie par :
dU = a·dV + b·dT.

Notons qu'il y a un abus d'écriture, usuel en physique ; on devrait écrire, comme en mathématiques (Les mathématiques constituent un domaine de connaissances abstraites construites à l'aide de raisonnements logiques sur des concepts tels que les nombres,...)

U = ƒ(V,T) = g(P,T) = h(V,S) = …
avec V le volume, T la température, P la pression, S l'entropie…

puisqu'en effet l'état considéré est fixé par deux paramètres, choisis arbitrairement parmi tous les paramètres ; la fonction (au sens mathématique) est donc différente selon la paire (On dit qu'un ensemble E est une paire lorsqu'il est formé de deux éléments distincts a et b, et il s'écrit alors :) de paramètres considérée.

Par définition, b s'appelle la capacité calorifique à volume constant et est notée CV.

Pour une transformation quasi-statique (c'est-à-dire qui évolue suffisamment lentement pour que pression P et température T soient à chaque fois bien définies dans tout le récipient), le travail des forces de pression est

δ W = - P·dV.

Il en résulte que :

δ Q = CV·dT + (a + PdV

le coefficient (En mathématiques un coefficient est un facteur multiplicatif qui dépend d'un certain objet, comme une variable (par exemple, les...) (a + P) s'appelle coefficient de chaleur latente de dilatation (La dilatation est l'expansion du volume d'un corps occasionné par son réchauffement, généralement imperceptible. Dans le cas d'un gaz, il y a dilatation à pression...) et est noté ?, égal d'après la formule de Clapeyron (La formule de Clapeyron ou relation de Clausius-Clapeyron est une formule générale permettant de calculer la chaleur latente L d'un changement de phase de la matière en fonction des volumes molaires du corps...) à

? = P·β·T (cf. Formules de thermodynamique).

β étant l'augmentation relative de pression isochore (La transformation d'un système (qui peut être solide, liquide, gazeux,...) est dite isochore si le volume du système ne change pas au cours de cette transformation.).

La forme différentielle δ Q s'écrit donc :

δ Q = CV·dT + P·β·T·dV

Pour un gaz parfait (Le gaz parfait est un modèle thermodynamique décrivant le comportement de tous les gaz réels à basse pression p.), β·T vaut 1, donc le deuxième terme n'est pas négligeable du tout. Et il est capital pour bien quantifier toute la thermodynamique. On va même le rendre intuitif, pour contrer un raisonnement " faux-conceptuellement " (" chauffer c'est échauffer " est faux) par une intuition éduquée :

Nous savons tous que si on détend un gaz (Un gaz est un ensemble d'atomes ou de molécules très faiblement liés et quasi-indépendants. Dans l’état gazeux, la matière n'a pas de forme propre ni de volume propre : un gaz tend à occuper tout le...), très vite, il se refroidit, et a contrario si on comprime un gaz très vite, il se réchauffe (voir Compression et détente adiabatique).

Expliquons-nous sur le terme " très vite " : on veut seulement dire par là que les parois n'auront pas le temps (Le temps est un concept développé par l'être humain pour appréhender le changement dans le monde.) de transmettre de chaleur, la transformation sera adiabatique (En thermodynamique, une transformation est dite adiabatique (du grec adiabatos, « qui ne peut être traversé ») si elle est effectuée sans qu'aucun échange de chaleur n'intervienne entre le système étudié et le milieu extérieur. Un...) (on verra plus tard réversible ou non : cf Irréversibilité). Autrement dit, selon le premier principe, il n'y a eu aucune corrélation entre la fluctuation de la force (Le mot force peut désigner un pouvoir mécanique sur les choses, et aussi, métaphoriquement, un pouvoir de la volonté ou encore une vertu morale « cardinale »...) et la fluctuation du mouvement produit, ou en tout cas, elle est négligeable. Alors,

δ Q = 0

et la relation précédente interprète quantitativement le phénomène : quand le piston s'est détendu, il a fourni (Les Foúrnoi Korséon (Grec: Φούρνοι Κορσέων) appelés plus...) du travail, de l'énergie interne a été perdue et la température a décrû. Chacun le sait, une détente adiabatique produit une chute de température dans un gaz, et a contrario, si on bouche (La bouche (encore dénommée cavité buccale ou cavité orale) est l'ouverture par laquelle la nourriture d'un animal entre dans son corps. Le mot gueule s'utilise aussi, mais avec un sens familier...) un corps de pompe (Une pompe est un dispositif permettant d'aspirer et de refouler un fluide.) à vélo et qu'on donne un coup de compression large, la température du gaz augmente, puisque, quelques instants plus tard, on ressent une élévation de température de la paroi de la pompe :

CV·dT = -P·dV·β·T

qui est la relation quantitative énoncée clairement par Clapeyron.

Autre formulation (La formulation est une activité industrielle consistant à fabriquer des produits homogènes, stables et possédant des propriétés spécifiques, en mélangeant...)

On peut aussi introduire la fonction d'état enthalpie notée H

U + PV = H
dH = CP·dT + V·(1-α·TdP

CP étant la capacité thermique (La capacité thermique (ou capacité calorifique) d'un corps est une grandeur permettant de quantifier la possibilité qu'a un corps d'absorber ou restituer de l'énergie...) à pression constante, comme nous l'indique la deuxième formule de Clapeyron. On en déduit par un calcul analogue au précédent :

δ Q = CP·dT - V·α·T·dP.

Là encore, nous avions l'intuition de l'existence de ce coefficient : si on détend la pompe par abaissement de pression, et que nous voulons que la température reste constante, nous avons évidemment bien l'intuition qu'il va falloir chauffer le gaz : il faudra qu'il y ait une corrélation entre la fluctuation de pression et la fluctuation de son effet la variation de volume. La relation de Clapeyron indique très quantitativement laquelle :

δ Q = - V·α·T·dP

Comme quasiment tous les corps se dilatent, c'est bien cette intuition que nous avions, mais nous n'arrivions pas à la formuler. Rien d'étonnant à cela : pas moins de 150 ans ont été nécessaires depuis l'invention de la machine à vapeur (La machine à vapeur est une invention,dont les évolutions les plus significatives datent du XVIIIe siècle. C'est un moteur thermique à combustion externe, il transforme l'énergie thermique que possède la vapeur...) par Papin (collaborant avec Huygens), pour que l'ingénieur (« Le métier de base de l'ingénieur consiste à résoudre des problèmes de nature technologique, concrets et souvent complexes, liés à la conception, à la réalisation et à la mise en œuvre...) Clapeyron élabore ces formules.

Mais voici maintenant un élément de réflexion :

il existe des corps purs pour lesquels la dilatation est négative : l'eau entre 0°C et 4°C

nous l'expliquerons plus tard (cf. Entropie de l'eau et Glace, ceci est dû au réarrangement des molécules sous l'effet des forces de Van der Waals). Cela est contre-intuitif, mais c'est une constation bien banale : l'eau à 4°C étant plus dense, se trouve au fond des lacs (hormis toute considération de salinité). Et néanmoins, la formule fonctionne : dans ce cas, une baisse de pression exigera d'ôter de la chaleur, sinon l'eau s'échaufferait ! Ceci dit, l'effet est faible car la dilatation de l'eau (négative certes) est très petite en module.

Coefficients calorimétriques

On voit donc qu'il y a bien deux sortes de transferts de chaleur. Il y a corrélation entre la fluctuation de la force et la fluctuation de sa conséquence, le déplacement ( En géométrie, un déplacement est une similitude qui conserve les distances et les angles orientés. En psychanalyse, le déplacement est mécanisme de défense déplaçant la valeur, et finalement le sens En architecture...) du piston de deux façons :

  • l'une effective : elle augmentera effectivement la température,
  • l'autre est latente : elle ne produit aucune agitation thermique supplémentaire, la température reste constante. Bien au contraire, elle a été nécessaire pour que la température ne change pas alors que le volume augmentait (resp. que la pression diminuait) et cela est aussi bien naturel en somme : quand les molécules rebondissent sur une raquette-piston en déplacement arrière, le rebond donne une vitesse (On distingue :) affaiblie : si l'on veut que l'agitation thermique moyenne, qui est la température (cf Température et Théorie cinétique des gaz), reste la même, il faut cette corrélation positive liée au coefficient de dilatation (Les coefficients de dilatation mesurent l'augmentation relative de volume d'un système lorsque l'on ne fait varier qu'un seul paramètre, en général la pression ou la température.). Il faut qu'il y ait transfert de chaleur (Un transfert de chaleur qu'il convient d'appeler transfert thermique ou transfert par chaleur est un transit d'énergie sous forme microscopie désordonnée.) latente (quantifié par Clapeyron).

Résumons et généralisons :

δQ = CP·dT - V·(α·TdP
δQ = CV·dT + P·(β·TdV

La température n'étant pas un paramètre (Un paramètre est au sens large un élément d'information à prendre en compte pour prendre une décision ou pour effectuer un calcul.) plus privilégié que les autres, on peut aussi écrire

δQ = λ·dV + μ·dP

Avec des relations entre ces coefficients :

  • La relation de Mayer : CP - CV = -P·V·T·β·α
  • \lambda = \frac{C_P}{V \cdot \alpha }
  • \mu = \frac{C_V}{P \cdot \beta }
  • La relation de Reech : \chi_S = +  \frac{\mu}{\lambda} \cdot \frac{1}{V}

soit compte-tenu des deux précédentes et de α = β·P·χT :

  • \frac{\chi_T}{\chi_S} = \frac{C_P}{C_V}
Source: Wikipédia publiée sous licence CC-BY-SA 3.0.

Vous pouvez soumettre une modification à cette définition sur cette page. La liste des auteurs de cet article est disponible ici.
Archives des News
  Août 2017
  Juillet 2017
  Juin 2017
  Mai 2017
  Toutes les archives

Le point sur...