Recherchez sur tout Techno-Science.net
       
Techno-Science.net : Suivez l'actualité des sciences et des technologies, découvrez, commentez
 A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | +
Moment angulaire
Un gyroscope tournant sur un clou
Un gyroscope tournant sur un clou

En physique, le moment angulaire ou moment cinétique est la grandeur physique qui joue un rôle analogue à la quantité de mouvement dans le cas des rotations. Comme le moment angulaire (En physique, le moment angulaire ou moment cinétique est la grandeur physique qui joue un rôle analogue à la quantité de mouvement dans le cas des rotations. Comme le...) dépend du choix de l'origine (ainsi que du référentiel d'étude (R)) il faut toujours spécifier cette origine et ne jamais combiner des moments angulaires ayant des origines différentes.

Cas d'un point (Graphie) matériel

On appelle point matériel ou corps ponctuel (En géométrie, un point est le plus petit élément constitutif de l'espace de travail.) un système mécanique dont les dimensions (Dans le sens commun, la notion de dimension renvoie à la taille ; les dimensions d'une pièce sont sa longueur, sa largeur et sa profondeur/son épaisseur, ou bien son diamètre si...) sont petites devant les distances caractéristiques du mouvement étudié (distance parcourue, rayon d'une orbite (En mécanique céleste, une orbite est la trajectoire que dessine dans l'espace un corps autour d'un autre corps sous l'effet de la gravitation.)...). Le système mécanique est alors modélisé par un point géométrique M auquel est associé sa masse (Le terme masse est utilisé pour désigner deux grandeurs attachées à un corps : l'une quantifie l'inertie du corps (la masse inerte) et l'autre la contribution du corps à la force de gravitation (la...) m.

Définition

Pour un point matériel M de vecteur (En mathématiques, un vecteur est un élément d'un espace vectoriel, ce qui permet d'effectuer des opérations d'addition et de multiplication par un scalaire. Un n-uplet peut constituer un exemple de vecteur, à condition qu'il...) position \vec{r}=\vec{OM} le moment cinétique ou angulaire \vec{L_{O}} par rapport à l'origine O est défini par:

\vec{L_{O}}=\vec{OM} \wedge \vec{p}=\vec{r}\wedge \vec{p}, (1)

\vec{p}=m\vec{v} est la quantité de mouvement de la particule. Le moment cinétique est donc le moment de cette dernière par rapport à O. \wedge est l'opérateur produit vectoriel (Le produit vectoriel est une opération vectorielle effectuée dans les espaces euclidiens orientés de dimension trois[1]. Le formalisme utilisé actuellement est apparu en 1881 dans un manuel...).

Un exemple simple est celui d'une particule décrivant un cercle (Un cercle est une courbe plane fermée constituée des points situés à égale distance d'un point nommé centre. La valeur de cette distance est...) de centre O et de rayon r :\vec{L_{O}} est dirigé selon l'axe du disque (Le mot disque est employé, aussi bien en géométrie que dans la vie courante, pour désigner une forme ronde et régulière, à l'image d'un palet...) et vaut \vec{L_{O}} =  \vec{k} \cdot mvr.

Théorème du moment cinétique pour un point matériel

Si l'on dérive membre à membre la définion (1) du moment angulaire, il vient, en supposant O fixe dans (R): \frac{\vec{dL_{O}}}{dt}=\frac{\vec{dr}}{dt}\wedge \vec{p}+\vec{r}\wedge \frac{\vec{dp}}{dt}=\vec{r}\wedge \frac{\vec{dp}}{dt}, puisque \frac{\vec{dr}}{dt} et \vec{p}=m\vec{v} sont colinéaires.

Par ailleurs pour un corps ponctuel, on a (relation fondamentale (En musique, le mot fondamentale peut renvoyer à plusieurs sens.) de la dynamique):

\frac{\vec{dp}}{dt}=\sum_{i} \vec{F_{i}}, (2), le terme de droite correspondant à la somme des forces \vec{F_{i}} (réelles ou "d'inertie (L'inertie d'un corps découle de la nécessité d'exercer une force sur celui-ci pour modifier sa vitesse (vectorielle). Ainsi, un corps immobile ou en mouvement...)") exercées sur le corps.

Par suite il vient l'équation suivante, dite théorème du moment cinétique:

\frac{\vec{dL_{O}}}{dt}=\vec{r}\wedge \sum_{i} \vec{F_{i}}=\sum_{i} \vec{\mathcal{M}_{O}}\left (\vec{F_{i}}\right), (3)

\vec{\mathcal{M}_{O}}\left ( \vec{F_{i}}\right)= \vec{r}\wedge \vec{F_{i}} est le moment de la force (Le mot force peut désigner un pouvoir mécanique sur les choses, et aussi, métaphoriquement, un pouvoir de la volonté ou encore une vertu...) \vec{F_{i}} par rapport au point O.

Remarque: par rapport à un point O mobile dans (R), le théorème du moment cinétique s'écrit: \frac{\vec{dL_{O}}}{dt}+\vec{v_{O}}\wedge \vec{p}=\sum_{i} \vec{\mathcal{M}_{O}}\left (\vec{F_{i}}\right).
La seule différence vient de l'addition (L'addition est une opération élémentaire, permettant notamment de décrire la réunion de quantités ou l'adjonction de grandeurs extensives de même nature, comme les longueurs, les aires, ou les volumes. En...) 'un terme complémentaire \vec{v_{O}}\wedge \vec{p} dans le membre de gauche de la relation (3).

Exemples d'application

Mouvement à force centrale: cas général

Un cas particulier très important d'utilisation du moment cinétique est celui du mouvement à force centrale, où le point matériel M est soumis à une seule force \vec{F} dont la direction passe par un point fixe dans (R), appelé centre de force. Par suite en prenant ce centre de force pour origine O, le théorème du moment cinétique (3)implique que le moment cinétique \vec{L_{O}} est une intégrale première du mouvement: \frac{\vec{dL_{O}}}{dt}=\vec{0}, soit \vec{L_{O}}=\vec{r}\wedge \vec{p}=\vec{cte}, puisque \vec{OM} et \vec{F} sont colinéaires.

Par conséquent le vecteur position \vec{r} et la quantité de mouvement \vec{p} du corps sont à tout (Le tout compris comme ensemble de ce qui existe est souvent interprété comme le monde ou l'univers.) instant (L'instant désigne le plus petit élément constitutif du temps. L'instant n'est pas intervalle de temps. Il ne peut donc être considéré comme une durée.) perpendiculaires à un vecteur de direction constante: la trajectoire (La trajectoire est la ligne décrite par n'importe quel point d'un objet en mouvement, et notamment par son centre de gravité.) est donc plane (La plane est un outil pour le travail du bois. Elle est composée d'une lame semblable à celle d'un couteau, munie de deux poignées, à chaque extrémité de la lame. Elle permet le...), entièrement contenue dans le plan perpendiculaire (En géométrie plane, on dit que deux droites sont perpendiculaires quand elles se coupent en formant un angle droit. Le terme de perpendiculaire vient du latin per-pendiculum (fil à plomb) et justifie la...) à \vec{L_{O}}=\vec{r_{0}}\wedge \vec{p_{0}} (l'indice "0" désigne les valeurs initiales des grandeurs).

Le mouvement ne comportant que deux degrés de liberté on se place en coordonnées polaires (r,θ) dans le plan de la trajectoire. il vient ainsi:

\vec{L_{O}}=L\vec{e_{z}}, avec L\equiv mr^{2}\dot{\theta},constante.

Compte tenu de v^{2}=\dot{r}^{2}+r^{2}\dot{\theta}^{2} en coordonnées polaires, l'énergie cinétique du point matériel s'écrit alors E_{k}=\frac{1}{2}m\dot{r}^{2}+\frac{L^{2}}{2mr^{2}}.

Mouvement à force centrale: cas où la force dérive d'une énergie potentielle

Si la force centrale \vec{F} dérive d'une énergie potentielle V(r), l'énergie mécanique du corps se met sous la forme: E_{m}=\frac{1}{2}m\dot{r}^{2}+U_{eff}(r) avec U_{eff}(r)\equiv V(r)+\frac{L^{2}}{2mr^{2}}, énergie potentielle effective.

On se ramène à un mouvement unidimensionnel d'une particule fictive dans un potentiel Ueff(r). Le terme \frac{L^{2}}{2mr^{2}} étant positif et croissant à courte de distance, il joue (La joue est la partie du visage qui recouvre la cavité buccale, fermée par les mâchoires. On appelle aussi joue le muscle qui sert principalement à ouvrir et fermer la bouche et à mastiquer.) le rôle de "barrière de potentiel centrifuge".

Quelques remarques et références additionnelles

  1. De nombreux auteurs supposent qu'une force centrale dérive toujours d'une énergie potentielle: ceci est faux en général. Par exemple, pour le pendule simple (Le pendule simple est le modèle de pendule pesant le plus simple : on considère une masse ponctuelle au bout d'une liaison rigide sans masse de longueur l pouvant tourner dans un plan vertical. Le point...), la force de tension (La tension est une force d'extension.) du fil est une force centrale car elle passe toujours par le point de fixation O du pendule (Le mot pendule (nom masculin) nous vient d'Huygens et du latin pendere. Il s'agit donc à l'origine d'un système oscillant sous l'effet de la pesanteur. Parmi les...), MAIS elle ne dérive pas d'une énergie potentielle.
  2. Une application importante des développements précédents est dans l'étude du mouvement keplerien des planètes et des satellites (Satellite peut faire référence à :). Les trajectoires sont alors des courbes fermées: ellipses.
  3. Il convient de souligner qu'en général les trajectoires obtenues pour une énergie potentielle V(r) quelconque ne sont pas des courbes fermées: seuls le potentiel coulombien attractif V(r)=-\frac{K}{r} (K constante) et le potentiel harmonique (Dans plusieurs domaines, une harmonique est un élément constitutif d'un phénomène périodique ou vibratoire (par exemple en électricité : les « courants...) V(r) = αr2 en donneront. Cela provient de l'existence, pour ces potentiels, d'une intégrale première additionnelle (pour le potentiel coulombien, il s'agit de l'invariant de Runge Lenz), associé à une symétrie supplémentaire (par transformation du groupe O(4)).

Cas d'un système matériel

Définition dans le cas général

Si un système est constitué de plusieurs particules (modèle discret), le moment angulaire total ( Total est la qualité de ce qui est complet, sans exception. D'un point de vue comptable, un total est le résultat d'une addition, c'est-à-dire une somme. Exemple : "Le total des dettes". En physique le...) est obtenu en additionant ou intégrant le moment angulaire de chacun de ses constituants. Il est également possible de se placer dans la limite des milieux continus pour décrire certains systèmes mécaniques (solides, notamment).

Suivant que l'on adopte un modèle discret ou continu, le moment cinétique du système (S) par rapport à une point O s'écrit:

L_{O}=\sum_{i} \vec{OM_{i}}\wedge \vec{p_{i}} ou L_{O}=\int_{(S)} \vec{OM}\wedge \rho (M)\vec{v_{M}}d\tau

Ces expressions générales ne sont guère utilisables directement. Le théorème de Koenig relatif au moment cinétique permet d'en donner une forme plus compréhensible physiquement.

Thèorème de Koenig pour le moment cinétique

Cas d'un solide: tenseur d'inertie

Source: Wikipédia publiée sous licence CC-BY-SA 3.0.

Vous pouvez soumettre une modification à cette définition sur cette page. La liste des auteurs de cet article est disponible ici.
Vendredi 15 Décembre 2017 à 00:00:11 - Vie et Terre - 0 commentaire
» Découverte du plus ancien plésiosaure au monde
Mercredi 13 Décembre 2017 à 00:00:13 - Multimédia - 1 commentaire
» Les jeux vidéo d'action améliorent la lecture
Mercredi 13 Décembre 2017 à 00:00:04 - Physique - 1 commentaire
» Une campagne très spéciale pour LHCb