Recherchez sur tout Techno-Science.net
       
Techno-Science.net : Suivez l'actualité des sciences et des technologies, découvrez, commentez
Catégories
Techniques
Sciences
Encore plus...
Techno-Science.net
Partenaires
Organismes
 CEA
 ESA
Sites Web
Photo Mystérieuse

Que représente
cette image ?
 A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | +
Analyse harmonique (mathématiques)

L'analyse harmonique, ou analyse de Fourier, est la branche des mathématiques qui étudie la représentation des fonctions ou des signaux comme superposition d'ondes de base. Elle approfondit et généralise les notions de série de Fourier et de transformée de Fourier (En analyse, la transformation de Fourier est un analogue de la théorie des séries de Fourier pour les fonctions non périodiques, et permet de leur associer un spectre en fréquences. On cherche...). Les ondes (Une onde est la propagation d'une perturbation produisant sur son passage une variation réversible de propriétés physiques locales. Elle transporte de l'énergie...) de base s'appellent les harmoniques, d'où le nom de la discipline. Durant ces deux derniers siècles, elle a eu de nombreuses applications en physiques sous le nom d'analyse spectrale (L'analyse spectrale est une méthode utilisée en physique pour déterminer les caractéristiques d'un phénomène observé. L'intensité du phénomène en fonction du temps constitue un signal, et ce signal est traité par les...), et connaît des applications récentes notamment en traitement des signaux, mécanique quantique (Fille de l'ancienne théorie des quanta, la mécanique quantique constitue le pilier d'un ensemble de théories physiques qu'on regroupe sous l'appellation générale de physique quantique....), neurosciences (Les neurosciences correspondent à l'ensemble de toutes les disciplines biologiques et médicales qui étudient tous les aspects, tant normaux que pathologiques,...), stratigraphie...

Séries et transformées de Fourier

Les séries de Fourier visent à décomposer une fonction périodique comme une " somme infinie de fonctions trigonométriques " de fréquences multiples d'une fréquence fondamentale (En acoustique, la fréquence fondamentale ou son fondamental est l'harmonique de premier rang d'un son.). Dans un premier temps (Le temps est un concept développé par l'être humain pour appréhender le changement dans le monde.), on procède à l'analyse du " contenu en fréquences ", appelé spectre, de la fonction. Puis, suivant les hypothèses faites sur la fonction et le cadre d'analyse choisi, on peut disposer de théorèmes permettant de recomposer f.

Un bon cadre d'étude pour les séries de Fourier est celui des espaces de Hilbert, ce qui fournit un lien entre analyse harmonique (Dans plusieurs domaines, une harmonique est un élément constitutif d'un phénomène périodique ou vibratoire (par exemple en électricité : les « courants harmoniques », qui sont des perturbations du courant électrique...) et analyse fonctionnelle (En mathématiques, le terme fonctionnelle se réfère à certaines fonctions. Initialement, le terme désignait les fonctions qui en prennent...).

La transformation de Fourier généralise la théorie (Le mot théorie vient du mot grec theorein, qui signifie « contempler, observer, examiner ». Dans le langage courant, une théorie est une idée ou une connaissance spéculative, souvent basée sur...) des séries de Fourier aux fonctions non périodiques, et permet de leur associer également un spectre en fréquences. On cherche alors à décomposer une fonction quelconque en " somme infinie de fonctions trigonométriques " de toutes fréquences. Une telle sommation se présentera donc sous forme d'intégrale (Une intégrale est le résultat de l'opération mathématique, effectuée sur une fonction, appelé intégration. Une intégrale est donc composée d'un intégrande (la fonction à...).

La transformée de Fourier classique sur Rn est encore un domaine de recherche (La recherche scientifique désigne en premier lieu l’ensemble des actions entreprises en vue de produire et de développer les connaissances scientifiques. Par extension métonymique, la recherche scientifique désigne également le...) actif, en particulier la transformation de Fourier sur des objets plus généraux comme les distributions tempérées. Par exemple, si nous imposons des contraintes à une distribution f, nous pouvons les traduire sur sa transformée de Fourier. Le théorème (Un théorème est une proposition qui peut être mathématiquement démontrée, c'est-à-dire une assertion qui peut être établie comme vraie au travers d'un raisonnement logique construit à partir...) de Paley-Wiener en est un exemple. Ce théorème a pour conséquence immédiate que si f est une distribution non nulle à support compact, alors sa transformée de Fourier n'est jamais à support compact. C'est une forme élémentaire des relations d'incertitudes de Heisenberg.

Analyse harmonique abstraite

L'une des branches les plus modernes de l'analyse harmonique, initiée au milieu du XXième siècle (Un siècle est maintenant une période de cent années. Le mot vient du latin saeculum, i, qui signifiait race, génération. Il a ensuite indiqué la durée d'une génération humaine et faisait 33 ans 4 mois (d'où peut être l'âge du Christ ?). Très...), est l'analyse sur les groupes topologiques. L'idée est que la transformation de Fourier peut être généralisée en une transformation des fonctions définies sur des groupes localement compacts.

La théorie pour les groupes abéliens localement compacts est la dualité de Pontryagin. L'analyse harmonique étudie les propriétés de cette dualité et essaie de les étendre à d'autres structures, par exemple les groupes de Lie non-abéliens. En général, pour les groupes non-abélien localement compacts, l'analyse harmonique est liée à la théorie des représentations des groupes unitaires. Pour les groupes compacts, le théorème de Peter-Weyl explique comment obtenir les harmoniques en choisissant une représentation irréductible dans chaque classe d'équivalence. Ce choix des harmoniques permet de profiter de certaines propriétés utiles de la transformation de Fourier qui transforme le produit de convolution (En mathématiques, le produit de convolution de deux fonctions réelles ou complexes f et g se note généralement «  » et s'écrit :) en produit usuel et révèle la structure de groupe sous-jacente.

Si le groupe n'est ni abélien ni compact, aucune théorie satisfaisante, c'est-à-dire équivalent au moins au théorème de Plancherel, n'est à présent connue. Mais certains cas particuliers ont été étudiés, comme par exemple le groupe spécial linéaire SLn. Dans ce cas, les représentations de dimension (Dans le sens commun, la notion de dimension renvoie à la taille ; les dimensions d'une pièce sont sa longueur, sa largeur et sa profondeur/son épaisseur, ou bien son diamètre...) infinie jouent un rôle crucial.

Pour aller plus loin

Source: Wikipédia publiée sous licence CC-BY-SA 3.0.

Vous pouvez soumettre une modification à cette définition sur cette page. La liste des auteurs de cet article est disponible ici.