Recherchez sur tout Techno-Science.net
       
Techno-Science.net : Suivez l'actualité des sciences et des technologies, découvrez, commentez
Catégories
Techniques
Sciences
Encore plus...
Techno-Science.net
Partenaires
Organismes
 CEA
 ESA
Sites Web
Photo Mystérieuse

Que représente
cette image ?
 A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | +
Matière noire

En astrophysique, la matière noire (ou matière sombre) désigne la matière apparemment indétectable, invoquée pour rendre compte d'effets inattendus, notamment au sujet des galaxies. Différentes hypothèses ont été émises et explorées sur la composition de cette hypothétique matière (La matière est la substance qui compose tout corps ayant une réalité tangible. Ses trois états les plus communs sont l'état solide, l'état...) noire : gaz (Un gaz est un ensemble d'atomes ou de molécules très faiblement liés et quasi-indépendants. Dans l’état gazeux, la matière n'a pas de forme propre ni de volume propre : un gaz tend à occuper...) moléculaire, étoiles mortes, naines brunes en grand nombre (La notion de nombre en linguistique est traitée à l’article « Nombre grammatical ».), trous noirs, etc. Cependant, les observations (ou plutôt le manque d'observations directes) impliqueraient plutôt une nature non-baryonique, et donc encore inconnue. La matière noire (En astrophysique, la matière noire (ou matière sombre) désigne la matière apparemment indétectable, invoquée pour rendre compte d'effets inattendus, notamment au sujet des galaxies. Différentes hypothèses ont été émises et explorées...) représenterait pourtant une abondance cinq fois plus importante que la matière baryonique, pour constituer de 22% [1] à 27% [2] de la densité (La densité ou densité relative d'un corps est le rapport de sa masse volumique à la masse volumique d'un corps pris comme référence. Le corps de...) totale de l'Univers (L'Univers est l'ensemble de tout ce qui existe et les lois qui le régissent.) observable (Dans le formalisme de la mécanique quantique, une opération de mesure (c'est-à-dire obtenir la valeur ou un intervalle de valeurs d'un paramètre physique, ou plus généralement une information sur un...)[3], selon les modèles de formation et d'évolution des galaxies, ainsi que les modèles cosmologiques.

Détection indirecte de la matière noire

Premiers indices

En 1933 l'astronome (Un astronome est un scientifique spécialisé dans l'étude de l'astronomie.) suisse Fritz Zwicky décide d'étudier un petit groupe de sept galaxies dans l'amas de Coma (Le terme « coma » signifie « sommeil profond » en grec ancien. Le coma est une abolition de la conscience et de la vigilance non...). Son objectif était de calculer la masse (Le terme masse est utilisé pour désigner deux grandeurs attachées à un corps : l'une quantifie l'inertie du corps (la masse inerte) et l'autre la contribution du corps à la force de...) totale de cet amas en étudiant la vitesse (On distingue :) (ou plutôt la dispersion (La dispersion, en mécanique ondulatoire, est le phénomène affectant une onde dans un milieu dispersif, c'est-à-dire dans lequel les...) des vitesses) de ces sept galaxies. Il pouvait ainsi — à l'aide des lois de Newton — en déduire la masse dite " masse dynamique ", puis la comparer avec la masse dite " masse lumineuse ", qui est la masse déduite de la quantité (La quantité est un terme générique de la métrologie (compte, montant) ; un scalaire, vecteur, nombre d’objets ou d’une autre manière de dénommer la valeur d’une collection ou un...) de lumière (La lumière est l'ensemble des ondes électromagnétiques visibles par l'œil humain, c'est-à-dire comprises dans des longueurs d'onde de 380nm (violet) à...) émise par l'amas (en faisant l'hypothèse d'une distribution raisonnable des populations d'étoiles dans les galaxies).

La dispersion des vitesses (ou autrement dit, comment les vitesses de ces 7 galaxies diffèrent les unes des autres) est directement liée à la masse présente dans l'amas par une formule semblable à la troisième loi de Kepler. En fait, un amas d'étoiles peut être comparé à un gaz, dont les particules seraient des étoiles. Si le gaz est chaud (et donc léger), la dispersion des vitesses des particules est élevée. Dans le cas extrême, les particules ayant une vitesse suffisante quittent le gaz (évaporation). Si le gaz est froid (Le froid est la sensation contraire du chaud, associé aux températures basses.) (et donc lourd), la dispersion des vitesses est faible.

Zwicky fut surpris de constater que les vitesses observées dans l'amas de Coma étaient très élevées. La masse dynamique (Le mot dynamique est souvent employé désigner ou qualifier ce qui est relatif au mouvement. Il peut être employé comme :) était 400 fois plus grande que la masse lumineuse ! À l'époque, les méthodes et la précision des mesures n'étaient pas assez bonnes pour ne pas exclure des erreurs de mesure. De plus, des objets massifs tels que les naines brunes, les naines blanches, les étoiles à neutrons et les trous noirs, tous des objets très peu rayonnants, étaient mal connus, tout (Le tout compris comme ensemble de ce qui existe est souvent interprété comme le monde ou l'univers.) comme leur distribution. De même pour la poussière interstellaire et le gaz moléculaire.

Zwicky fit part de ses observations à ses confrères, mais ceux-ci ne semblaient pas s'y intéresser. Zwicky n'avait pas très bonne réputation à cause de son fort caractère et ses mesures étaient critiquables en raison des grandes incertitudes de mesure.

Ce même phénomène a été observé à nouveau en 1936 par Sinclair Smith lors du calcul de la masse dynamique totale de l'amas de la Vierge. Celle-ci était 200 fois plus importante que l'estimation donnée (Dans les technologies de l'information, une donnée est une description élémentaire, souvent codée, d'une chose, d'une transaction, d'un événement, etc.) par Edwin Hubble (Le télescope spatial Hubble (en anglais, Hubble Space Telescope ou HST) est un télescope en orbite à environ 600 kilomètres d'altitude, il effectue un tour...), mais elle pouvait, d'après Smith, s'expliquer par la présence de matière entre les galaxies de l'amas. En outre, les amas de galaxies (Un amas de galaxies est l'association de plus d'une centaine de galaxies liées entre elles par la gravitation. En deçà de 100, on parle plutôt de groupe de galaxies, même si la...) étaient encore considérés par un grand nombre d'astronomes comme des structures temporaires dont les galaxies pouvaient s'échapper, plutôt que des structures stables. Cette explication suffisait pour justifier les vitesses excessives.

La question de la différence entre la masse dynamique et la masse lumineuse n'intéresse pas et sombre dans l'oubli pour plusieurs décennies. À l'époque, les astronomes avaient d'autres questions jugées plus importantes, comme celle de l'expansion de l'Univers.

Les courbes de rotation plate des galaxies spirales

Ce n'est qu'une quarantaine (La quarantaine (venant de l'italien : quaranta giorni, qui signifie 40 jours, ou bien du français : quarantaine de jours) est le fait de mettre à l'écart des...) d'années plus tard, dans les années 1970, que la question de l'existence de cette matière manquante — que l'on nommera " matière noire " (Dark Matter en anglais) — refait surface (Une surface désigne généralement la couche superficielle d'un objet. Le terme a plusieurs acceptions, parfois objet géométrique, parfois...). À partir de l'analyse des spectres des galaxies, l'astronome américaine Vera Rubin étudia la rotation des galaxies spirales. Le problème est le même que la comparaison entre la masse dynamique et la masse lumineuse des amas de galaxies. Il s'agit de savoir si la " masse lumineuse ", c'est-à-dire la masse qui est déduite de la présence des étoiles, est bien égale (à quelques corrections près) à la masse dynamique.

Il faut noter que la masse dynamique est normalement la seule masse véritable, puisqu'il s'agit d'une mesure de la masse déduite de son influence gravitationnelle. Toute masse étant soumise à la force (Le mot force peut désigner un pouvoir mécanique sur les choses, et aussi, métaphoriquement, un pouvoir de la volonté ou encore une vertu morale...) de gravitation (La gravitation est une des quatre interactions fondamentales de la physique.), il n'y a aucune raison de penser que la masse dynamique observée est fausse. Ce n'est pas aussi simple pour la masse lumineuse. Pour mesurer cette dernière, on fait l'hypothèse que toute la masse de la galaxie (Galaxies est une revue française trimestrielle consacrée à la science-fiction. Avec ce titre elle a connu deux existences, prenant par...) (ou de l'amas de galaxies) est constituée d'étoiles. Ces étoiles rayonnent, et si l'on connaît (mais c'est très difficile) leur distribution (masse, nombre, âge, etc.), l’infrarouge (Le rayonnement infrarouge (IR) est un rayonnement électromagnétique d'une longueur d'onde supérieure à celle de la lumière visible mais plus courte que celle des micro-ondes.) proche est donc un bon " traceur " de masse (il est peu sensible au fort rayonnement (Le rayonnement est un transfert d'énergie sous forme d'ondes ou de particules, qui peut se produire par rayonnement électromagnétique (par exemple : infrarouge) ou par une désintégration...) des étoiles massives et permet de détecter l’emission des étoiles moins massives qui piquent dans l'optique (L'optique est la branche de la physique qui traite de la lumière, du rayonnement électromagnétique et de ses relations avec la vision.) et dans l’infrarouge).

En analysant le spectre des galaxies spirales vues par la tranche, comme la galaxie (Une galaxie est, en cosmologie, un assemblage d'étoiles, de gaz, de poussières et de matière noire et contenant parfois un trou noir supermassif en son centre.) d'Andromède, il est possible d'en déduire la courbe (En géométrie, le mot courbe, ou ligne courbe désigne certains sous-ensembles du plan, de l'espace usuels. Par exemple, les droites, les segments, les...) de rotation. La courbe de rotation décrit la vitesse de rotation de la galaxie en fonction de la distance au centre. Cette courbe de rotation est une mesure directe de la distribution globale de matière dans la galaxie. La vitesse maximale de rotation d'une galaxie spirale ((voir page de discussion)) se trouve à quelques kilo-parsecs du centre, puis elle est censée décroître, en suivant une décroissance képlérienne. En effet, les étoiles à la périphérie (Le mot périphérie vient du grec peripheria qui signifie circonférence. Plus généralement la périphérie désigne une limite éloignée d'un...) de la galaxie sont en orbite (En mécanique céleste, une orbite est la trajectoire que dessine dans l'espace un corps autour d'un autre corps sous l'effet de la gravitation.) autour (Autour est le nom que la nomenclature aviaire en langue française (mise à jour) donne à 31 espèces d'oiseaux qui, soit appartiennent au genre Accipiter, soit constituent les 5 genres Erythrotriorchis, Kaupifalco,...) du centre, de la même manière que les planètes sont en orbite autour du Soleil (Le Soleil (Sol en latin, Helios ou Ήλιος en grec) est l'étoile centrale du système solaire. Dans la classification astronomique, c'est une étoile de type naine jaune, et...). Les étoiles en périphérie de la galaxie tournent donc moins vite que celles plus près du centre. La courbe de rotation, après un maximum, se met à redescendre.

La courbe de rotation prévue par les équations de Newton (A) et la courbe observée (B) , en fonction de la distance au centre de la  galaxie.
La courbe de rotation prévue par les équations de Newton (A) et la courbe observée (B) , en fonction de la distance au centre de la galaxie.

Or, Vera Rubin observa que les étoiles situées à la périphérie de la galaxie d'Andromède — comme pour d'autres galaxies spirales — semblent tourner trop vite (les vitesses restaient pratiquement constantes au fur (Fur est une petite île danoise dans le Limfjord. Fur compte environ 900 hab. . L'île couvre une superficie de 22 km². Elle est située dans la...) et à mesure que l'on s'éloignait du centre). La courbe de rotation des galaxies spirales, ou en tous cas de certaines d'entre elles, était plate. La vitesse ne décroissait pas alors que l'on s'éloignait du centre. De nombreuses autres observations similaires sont effectuées dans les années 1980, venant renforcer celles de Vera Rubin. Cette observation (L’observation est l’action de suivi attentif des phénomènes, sans volonté de les modifier, à l’aide de moyens d’enquête et d’étude...) pose de profondes questions, car la courbe de rotation mesure bien la masse dynamique. Aucune hypothèse au sujet de l'âge, de la distribution de masse des étoiles n'est nécessaire. La seule supposition est que les étoiles qui sont la source de la lumière qui forme le spectre analysé sont bien des traceurs de la masse de la galaxie. Comment imaginer alors que les étoiles, principales composantes de matière dans les galaxies spirales, tournent de manière non-képlerienne, c'est-à-dire ne suivent tout simplement plus les lois de la gravitation ?

Une explication possible est d'imaginer l'existence d'un gigantesque halo de matière non visible entourant les galaxies ; un halo qui représenterait jusqu'à 90 % [réf. nécessaire] de la masse totale de la galaxie, voire plus dans certaines galaxies naines. Ainsi toutes les étoiles se trouvent presque au centre de l'extension véritable de la " galaxie " (cette fois-ci composée de la galaxie visible et du halo de matière sombre), et tournent donc normalement. Cela revient à dire que les étoiles, même celles à la périphérie visible de la galaxie, ne sont pas " assez loin " du centre pour être dans la partie redescendante de la courbe de rotation. Il reste à observer directement cette fameuse matière pour confirmer que c'est la bonne explication. Personne n'y est encore parvenu jusqu'à aujourd'hui.

La présence de matière noire est l'une des explications possibles, et aujourd'hui la plus convaincante. Elle a l'immense avantage d'être simple et d'aller dans le bon sens (SENS (Strategies for Engineered Negligible Senescence) est un projet scientifique qui a pour but l'extension radicale de l'espérance de vie humaine. Par une évolution...). En effet, les astronomes se doutaient bien que les galaxies contiennent des astres très peu lumineux (comme les naines brunes, naines blanches, trous noirs, étoiles à neutrons) qui peuvent consituer une partie importante de la masse totale de la galaxie, mais qui ne sont pas visibles avec les instruments optiques habituels. Avec la mesure de la courbe de rotation plate le plus loin possible du centre, l'observation (L’observation est l’action de suivi attentif des phénomènes, sans volonté de les modifier, à l’aide de moyens d’enquête et d’étude appropriés. Le plaisir...) des galaxies spirales dans d'autres longueurs d'onde (Une onde est la propagation d'une perturbation produisant sur son passage une variation réversible des propriétés physiques locales. Elle transporte de l'énergie sans transporter...) (afin de mieux caractériser la présence d'objets peu lumineux dans le domaine visible) fut un des efforts majeurs de l'astronomie (L’astronomie est la science de l’observation des astres, cherchant à expliquer leur origine, leur évolution, leurs propriétés physiques et chimiques. Elle ne doit pas être confondue avec la mécanique...) pour étudier le problème.

Observations récentes

D'après des résultats publiés en août 2006, de la matière noire aurait été observée distinctement de la matière ordinaire [4][5] grâce à l'observation de l'amas du boulet constitué en fait de deux amas voisins qui sont entrés en collision il y a environ 150 millions d'années.[6] Les astronomes ont analysé l'effet de lentille gravitationnelle afin de déterminer la distribution totale de masse dans la paire (On dit qu'un ensemble E est une paire lorsqu'il est formé de deux éléments distincts a et b, et il s'écrit alors :) d'amas et ont comparé cette distribution avec celle de la matière ordinaire telle que donnée par l'observation directe des émissions de rayons X en provenance du gaz extrêmement chaud des amas, dont on pense qu'il constitue la majorité de la matière ordinaire des amas (les galaxies contribuant en fait très peu). La température (La température est une grandeur physique mesurée à l'aide d'un thermomètre et étudiée en thermométrie. Dans la vie courante, elle est reliée aux sensations...) très élevée du gaz est due précisément à la collision au cours de laquelle la matière ordinaire interagit entre les deux amas et est ralentie dans son mouvement. La matière noire quant à elle n'aurait pas interagi, ou très peu, ce qui explique sa position différente (En mathématiques, la différente est définie en théorie algébrique des nombres pour mesurer l'éventuel défaut de dualité d'une application définie à l'aide de...) dans les amas après la collision.

La meilleure preuve de l'existence de la matière noire viendrait cependant d'une observation véritablement directe, c'est-à-dire de l'interaction (Une interaction est un échange d'information, d'affects ou d'énergie entre deux agents au sein d'un système. C'est une action réciproque qui suppose l'entrée en contact de sujets.) entre des particules de matière noire avec des détecteurs terrestres, tels CDMS, XENON ou WARP, ou de la création de telles particules dans un accélérateur (comme le LHC par exemple). Ce type de mise en évidence aurait l'avantage de déterminer précisément la masse de telles particules et d'analyser en profondeur la forme de leurs interactions.

Répartition de la matière noire dans l'Univers

Au sein des galaxies

À partir des vitesses de rotation des étoiles et des galaxies (au niveau des amas), il a été possible de mesurer la masse de cette matière noire, et d'en déduire également sa répartition. Une grande quantité de cette matière devrait se trouver au sein même des galaxies, non pas dans le disque (Le mot disque est employé, aussi bien en géométrie que dans la vie courante, pour désigner une forme ronde et régulière, à l'image d'un palet — discus en latin.) galactique mais sous forme d'un halo englobant la galaxie. Cette configuration permet une stabilité du disque galactique. De plus, certaines galaxies possèdent des anneaux perpendiculaires au disque et composés de gaz, de poussières et d'étoiles. Là encore, le halo de matière expliquerait la formation et la stabilité que de tels anneaux nécessitent. Par contre, il est impossible que la matière noire se trouve dans le disque galactique, car on devrait alors observer une oscillation (Une oscillation est un mouvement ou une fluctuation périodique. Les oscillations sont soit à amplitude constante soit amorties. Elles répondent aux mêmes équations quel que soit le domaine.) perpendiculaire (En géométrie plane, on dit que deux droites sont perpendiculaires quand elles se coupent en formant un angle droit. Le terme de perpendiculaire vient du latin per-pendiculum (fil à plomb) et justifie la...) au disque dans le mouvement des étoiles que nous ne voyons pas.

À l'instar de la matière lumineuse, elle décroîtrait également au fur et à mesure que l'on s'éloigne du centre de la galaxie, mais de façon beaucoup moins prononcée. Ainsi, la proportion de matière lumineuse varierait de dominante au cœur des galaxies à négligeable à la périphérie. L'étude de galaxies satellites (petites galaxies tournant autour d'autres galaxies) oblige à imaginer des halos très étendus : environ 200 ou 300 kpc. Par comparaison, le Soleil est situé à environ 8,6 kpc du centre de notre galaxie. La galaxie d'Andromède — galaxie la plus proche de nous — se situe à 725 kpc, soit un peu plus du double du rayon du halo de matière noire de notre galaxie. Du coup, ces halos devraient être communs entre galaxies voisines (comme des pépins dans une même pomme).

Entre les galaxies, à l'échelle des amas

Les mouvements de galaxies au sein des amas ont révélé le même problème que l'étude des mouvements des étoiles dans les galaxies et suggèrent donc la présence de matière noire entre les galaxies ; bien que rien ne prouve encore que ces deux problèmes soient liés. À l'échelle des galaxies, le taux de matière noire serait jusqu'à dix fois celui de la matière lumineuse, mais au niveau des amas, il serait bien plus important : jusqu'à trente fois la masse " visible " de ces amas.

En 1996, l'astrophysicien Yannick Mellier a entrepris avec son équipe de mesurer la quantité de matière (La quantité de matière est une grandeur de comptage d'entités chimiques ou physiques élémentaires. L'unité qui lui correspond est la mole.) noire dans tout l'Univers et de dresser une carte de sa distribution entre les amas de galaxies à l'aide du cisaillement gravitationnel. L'idée est de faire une étude statistique (Une statistique est, au premier abord, un nombre calculé à propos d'un échantillon. D'une façon générale, c'est le résultat de...) à grande échelle (La grande échelle, aussi appelée échelle aérienne ou auto échelle, est un véhicule utilisé par les sapeurs-pompiers, et qui emporte une échelle escamotable de grande...) de la déformation des images des galaxies due à l'interaction gravitationnelle de la matière noire présente entre la Terre (La Terre est la troisième planète du Système solaire par ordre de distance croissante au Soleil, et la quatrième par taille et par masse...) et ces structures, déviant les rayons lumineux envoyés par celles-ci (leur image nous arrive donc déformée). Une étude statistique à très grande échelle (la région du ciel (Le ciel est l'atmosphère de la Terre telle qu'elle est vue depuis le sol de la planète.) étudiée était de la taille apparente de la lune (La Lune est l'unique satellite naturel de la Terre et le cinquième plus grand satellite du système solaire avec un diamètre de 3 474 km. La distance moyenne séparant la Terre de la Lune est de...) et sur une profondeur de 5 milliards d'années-lumière) permet de négliger les déformations locales dues aux autres amas de galaxies.

Cette étude a abouti en mars 2000 à une première cartographie (La cartographie désigne la réalisation et l'étude des cartes géographiques. Le principe majeur de la cartographie est la représentation de données sur un support...) (encore sous forme d'ébauche). La matière noire devrait prendre la forme de longs filaments qui s'entre-croisent, la quantité de matière de l'univers devrait représenter un tiers de celle permettant d'atteindre la densité critique, le reste étant constitué d'énergie (Dans le sens commun l'énergie désigne tout ce qui permet d'effectuer un travail, fabriquer de la chaleur, de la lumière, de produire un mouvement.) noire.

Une nouvelle étude similaire est en cours, toujours par l'équipe de Yannick Mellier, avec cette fois une caméra (Le terme caméra est issu du latin : chambre, pour chambre photographique. Il désigne un appareil de prise de vues animées, pour le cinéma, la...) CCD plus grande, permettant d'étudier une surface vingt fois plus grande que lors de la première étude. Celle-ci permettra d'obtenir une carte plus détaillée de la matière noire à grande échelle.

Formation des grandes structures de l'Univers

La matière noire pose de nombreux problèmes, mais peut en résoudre certains autres. On peut la faire intervenir pour expliquer la formation des grandes structures de l'univers (galaxies, amas de galaxies, superamas (En astronomie, un superamas est une association d'amas et de groupes de galaxies.), etc.).

Le problème est le suivant. On suppose que peu de temps (Le temps est un concept développé par l'être humain pour appréhender le changement dans le monde.) après le Big Bang (Le Big Bang est l’époque dense et chaude qu’a connu l’univers il y a environ 13,7 milliards d’années, ainsi que l’ensemble des...), l'Univers, composé de protons, de neutrons, d'électrons, de photons et autres particules est à peu près homogène, c'est-à-dire uniforme en tout point (Graphie), car sa température est trop élevée pour permettre aux particules qui forment les atomes (Un atome (du grec ατομος, atomos, « que l'on ne peut diviser ») est la plus petite partie d'un corps simple...) de se regrouper. Aujourd'hui, lorsque l'on observe la répartition des objets dans l'Univers, on remarque qu'ils ne sont pas distribués de manière uniforme ; on suppose donc qu'il a fallu que de la matière se concentre un peu plus en certains endroits, formant (Dans l'intonation, les changements de fréquence fondamentale sont perçus comme des variations de hauteur : plus la fréquence est élevée, plus la hauteur perçue est haute et inversement. Chaque voyelle se caractérise par son...) des fluctuations que l'on appelle " fluctuations primordiales ".

Et pour repérer ces fluctuations de densité sur le fond diffus cosmologique (Le fond diffus cosmologique est un rayonnement électromagnétique provenant de l'Univers, et qui frappe la Terre de façon quasi uniforme dans toutes les directions.), il suffit de repérer les différences de températures provenant de ce rayonnement fossile (Un fossile (dérivé du substantif du verbe latin fodere : fossile, littéralement « qui est fouillé ») est le...). La température moyenne (La moyenne est une mesure statistique caractérisant les éléments d'un ensemble de quantités : elle exprime la grandeur qu'auraient chacun des membres de l'ensemble s'ils étaient...) relevée est d'environ 2,7 K. Des zones légèrement plus chaudes indiqueraient une densité de matière un peu plus forte. Il suffisait que ces fluctuations soient de l'ordre du millième de degré (Le mot degré a plusieurs significations, il est notamment employé dans les domaines suivants :) pour expliquer la formation des galaxies à partir de ces regroupements de matière.

Malheureusement pour cette théorie (Le mot théorie vient du mot grec theorein, qui signifie « contempler, observer, examiner ». Dans le langage courant, une théorie est une idée ou une...), le satellite (Satellite peut faire référence à :) COBE lancé en 1992 ne révéla que des variations de température de l'ordre du cent millième de degré, ce qui est bien trop faible pour que les grandes structures de l'Univers puissent s'être formées à partir de ces fluctuations primordiales en seulement 13,7 milliards d'années.

C'est là qu'on fait intervenir la matière noire pour sauver la théorie. Les protons, neutrons et électrons ne pouvaient se regrouper pour former les atomes à cause de la pression (La pression est une notion physique fondamentale. On peut la voir comme une force rapportée à la surface sur laquelle elle s'applique.) des photons. En revanche, la matière noire n'interagit pas avec les photons et n'aurait donc pas subi cette pression, ce qui lui aurait permis de créer des fluctuations de densité (invisibles) bien avant la matière ordinaire. Ces fluctuations auraient ainsi pu attirer, par gravitation, la matière ordinaire lors du découplage matière-rayonnement de la nucléosynthèse primordiale (En 1948, l'astronome anglais Fred Hoyle développe une théorie selon laquelle les éléments chimiques se forment dans les étoiles. Cette théorie, appelée nucléosynthèse stellaire, explique de façon satisfaisante les populations relatives d'un grand...) (découplage qui a libéré les photons et rendu (Le rendu est un processus informatique calculant l'image 2D (équivalent d'une photographie) d'une scène créée dans un logiciel de modélisation 3D comportant à la fois des objets et des sources de lumière et vue...) l'Univers transparent).

Dans cette hypothèse, ce sont donc ces fluctuations de densité de la matière noire qui seraient à l'origine de la formation des galaxies et des amas de galaxies, répartis de façon non uniforme dans l'Univers. Reste malheureusement à expliquer pourquoi la matière sombre aurait adopté une distribution non homogène, à l'inverse (En mathématiques, l'inverse d'un élément x d'un ensemble muni d'une loi de composition interne · notée multiplicativement, est un élément y tel que x·y =...) de la matière ordinaire...

Nature de cette matière sombre

Matière noire chaude et matière noire froide

Deux grandes théories s'affrontent quant à la nature de cette matière noire : la matière noire chaude et la matière noire froide. Celles-ci reposent sur la masse des particules composant la matière noire et par conséquent, à leur vitesse. Dans le cas de matière noire dite " chaude ", les particules ont des vitesses proches de celle de la lumière, tandis que celles composant une matière noire dite " froide " seraient plus massives et donc plus lentes.

La vitesse de déplacement ( En géométrie, un déplacement est une similitude qui conserve les distances et les angles orientés. En psychanalyse, le déplacement est mécanisme de défense déplaçant...) de ces particules intervient dans l'ordre de formation des grandes structures de l'Univers. Si l'Univers était dominé par de la matière noire chaude, la très grande vitesse des particules la constituant empêcherait dans un premier temps la formation d'une structure plus petite que le superamas de galaxies qui ensuite se fragmente en amas de galaxies, puis en galaxies, etc. C'est le scénario dit " du haut vers le bas ", puisque les plus grosses structures se forment d'abord, pour ensuite se diviser. Le meilleur candidat pour constituer la matière noire chaude est le neutrino (Le neutrino est une particule élémentaire du modèle standard de la physique des particules.). En revanche, si la matière noire froide dominait l'Univers, les particules vont parcourir une distance plus petite et donc effacer les fluctuations de densité sur des étendues plus petites que dans le cas de matière noire chaude. La matière ordinaire va alors se regrouper pour former d'abord des galaxies (à partir de nuages de gaz), qui elles-mêmes se regrouperont en amas, puis superamas. C'est le scénario dit " du bas vers le haut ". Les candidats à la matière noire froide sont les WIMP et les MACHO.

Ces deux théories étaient défendues par Yakov Borisovitch Zeldovitch pour la matière noire chaude, et James Peebles pour la matière noire froide. Actuellement, c'est le modèle de matière noire froide qui semble l'emporter. En effet, les galaxies sont en équilibre dynamique, ce qui laisse penser qu'elles se sont créées avant les amas — dont tous ne semblent pas encore stables — à qui il faut plus de temps pour atteindre cet équilibre. Cependant, les théories introduisent aujourd'hui un peu de matière noire chaude. Celle-ci est nécessaire pour expliquer la formation des amas ; la matière froide seule ne pouvant la permettre en si peu de temps.

Recherches du côté de la matière ordinaire

Les scientifiques se sont dans un premier temps tournés vers la matière ordinaire (ou baryonique) pour effectuer leurs recherches et ont passé (Le passé est d'abord un concept lié au temps : il est constitué de l'ensemble des configurations successives du monde et s'oppose au futur sur une échelle des temps centrée sur le...) en revue tous les types d'objets qui pourraient contribuer à ce champ (Un champ correspond à une notion d'espace défini:) gravitationnel, tels les nuages de gaz, les astres morts ou les trous noirs.

Les nuages de gaz ?

Dans les années 1990, des cartographies précises des sources d'émission de rayons X dans l'univers — obtenues grâce au satellite (Satellite peut faire référence à :) Rosat — ont mis en évidence la présence de gigantesques nuages de gaz ionisé au sein des amas de galaxies ; des nuages de plusieurs millions de degrés n'émettant pas de lumière visible (La lumière visible, appelée aussi spectre visible ou spectre optique est la partie du spectre électromagnétique qui est visible pour l'œil humain.). De plus, ces nuages semblaient contenir dix fois plus de matière (du moins, lumineuse) que les galaxies de ces amas, peut-être était-ce enfin la matière manquante recherchée ? Malheureusement non. Au contraire même, ces nuages sont la preuve de la présence de matière noire autour des galaxies. En effet, pour atteindre de telles températures, les particules constituant le nuage (Un nuage est une grande quantité de gouttelettes d’eau (ou de cristaux de glace) en suspension dans l’atmosphère. L’aspect d'un nuage dépend de la lumière qu’il reçoit, de la nature, de la...) doivent être accélérées à des vitesses très élevées (environ 300 km/s), et cette accélération (L'accélération désigne couramment une augmentation de la vitesse ; en physique, plus précisément en cinématique, l'accélération est une grandeur vectorielle qui indique la...) provient de la force de gravitation. Or la quantité de gaz est insuffisante pour générer un tel champ de gravité (La gravitation est une des quatre interactions fondamentales de la physique.). De même, les étoiles ne peuvent à elles seules empêcher le nuage de gaz de s'échapper. L'influence gravitationnelle de la matière sombre est ici aussi nécessaire pour expliquer le confinement de ces nuages à proximité des galaxies. D'ailleurs, la forme de ces nuages peut aider les astronomes à étudier la distribution de la matière noire aux alentours.

Conclusions des programmes MACHO, EROS et AGAPE

On estime que les trois quarts de la matière baryonique de l'Univers sont constitués d'hydrogène (L'hydrogène est un élément chimique de symbole H et de numéro atomique 1.). Les nuages d'hydrogène atomique dans lesquels sont présentes les étoiles sont insuffisants pour expliquer cette forte interaction gravitationnelle qui fait tourner les étoiles en périphérie de galaxie plus vite que prévu, et ne multiplie qu'au mieux par deux la masse de la galaxie ; il manque encore au moins cinq fois la masse de la galaxie. Les astronomes se sont alors intéressés aux objets plus compacts et n'émettant pas de lumière (ou trop peu pour être détectés), tels les naines brunes (astres qui n'atteignent pas le stade (Un stade (du grec ancien στ?διον stadion, du verbe ?στημι istêmi, « se tenir droit et ferme ») est un équipement sportif.) d'étoile (Une étoile est un objet céleste émettant de la lumière de façon autonome, semblable à une énorme boule de plasma comme le Soleil, qui est l'étoile la plus proche de la Terre.) car pas assez massives) ou les naines blanches (étoiles mortes composées d'éléments lourds). Ces objets sont appelés " MACHO ", pour Massive Compact Halo Objects (objets compacts massifs du halo).

La théorie des naines blanches a été confortée par les travaux d'Oppenheimer (2001), mais fut contestée par la suite (notamment Bergeron, 2001, 2003, 2005). Cette hypothèse reste en suspens faute de mesure de parallaxe (La parallaxe est l'incidence du changement de position de l'observateur sur l'observation d'un objet.) trigonométrique et donc de distance sur les naines blanches de leur étude. D'après les travaux d'Oppenheimer, la limite inférieure de la contribution de la masse des naines blanches du halo à la masse manquante de la galaxie est de 3%, à comparer à la limite supérieure fournie par EROS qui est de 35%. Il existe néanmoins des problèmes avec cette hypothèse : la masse manquante des galaxies est tout de même assez importante et il faudrait donc dix fois plus d'étoiles mortes que d'étoiles vivantes. Or en observant dans l'espace lointain, on devrait voir des galaxies peuplées de ces étoiles encore vivantes (leur lumière nous venant d'une époque bien plus ancienne), donc des galaxies beaucoup plus lumineuses ; mais ce n'est pas le cas. De plus, la proportion de supernovae devrait également être plus importante dans ces galaxies lointaines. Les supernovae libérant des éléments lourds, la proportion de ces éléments devrait aussi être dix fois plus importante que celle détectée actuellement.

Pour les naines brunes, le problème était de les détecter. En 1986, l'astronome Bohdan Paczy?ski explique comment détecter ces objets massifs mais n'émettant pas de lumière, à l'aide de l'effet de lentille gravitationnelle. Un objet (De manière générale, le mot objet (du latin objectum, 1361) désigne une entité définie dans un espace à trois dimensions, qui a une fonction précise, et qui peut être désigné par une étiquette verbale. Il est...) massif (Le mot massif peut être employé comme :) passant devant une étoile dévierait les rayons lumineux émis par cette étoile. Concrètement, l'effet de lentille va créer une seconde ( Seconde est le féminin de l'adjectif second, qui vient immédiatement après le premier ou qui s'ajoute à quelque chose de nature identique. La seconde est une unité de mesure du temps. ...) image de cette étoile et la superposer à celle de l'étoile ; la luminosité (La luminosité désigne la caractéristique de ce qui émet ou réfléchit la lumière.) devient à ce moment (lorsque l'objet passe juste devant l'étoile) plus importante. Le problème était cependant la rareté du phénomène : le nombre de chances d'observer à un instant (L'instant désigne le plus petit élément constitutif du temps. L'instant n'est pas intervalle de temps. Il ne peut donc être considéré comme une...) un effet de lentille gravitationnelle dû à une naine brune (Une naine brune est un objet insuffisamment massif pour être considéré comme une étoile mais plus gros qu'une planète géante. Il y a accord sur la limite supérieure : une naine brune ne...) (en supposant que la matière noire en est essentiellement composée) est de un sur un million (Un million (1 000 000) est l'entier naturel qui suit neuf cent quatre-vingt-dix-neuf mille neuf cent quatre-vingt-dix-neuf (999 999) et qui précède un million un (1 000 001). Il...).

Bénéficiant de caméras CCD à grand champ (récupérées de programmes militaires), les astronomes ont pu au début des années 1990 étudier un grand nombre d'étoiles à la fois, augmentant les chances d'observer des effets de lentille gravitationnelle. Deux programmes d'observation sont nés : EROS (Expérience pour la Recherche (La recherche scientifique désigne en premier lieu l’ensemble des actions entreprises en vue de produire et de développer les connaissances scientifiques. Par extension métonymique, la recherche scientifique désigne également le cadre...) d'Objets Sombres) en 1990 et MACHO en 1992 ; le premier se concentrant sur la recherche d'objets moins massifs et plus petits. Ces programmes se sont arrêtés en 2003 et 2001, avec un bilan peu convaincant. Peu d'effets de lentille gravitationnelle ont été observés et les scientifiques ont dû conclure que moins de 10 % du halo de notre galaxie pourrait être formé de naines brunes, ce qui est insuffisant encore une fois.

Le programme AGAPE (Andromeda Galaxy Amplified Pixel Experiment) a débuté vers 1994 et avait pour but de détecter des effets de lentille gravitationnelle en observant cette fois non plus le Grand Nuage de Magellan comme MACHO et EROS, mais la galaxie d'Andromède. La distance étant plus grande, la probabilité (La probabilité (du latin probabilitas) est une évaluation du caractère probable d'un évènement. En mathématiques, l'étude des probabilités est un sujet de grande importance donnant lieu à de...) que la lumière soit déviée par un objet compact l'est aussi. Ici aussi, peu d'effets de lentille sont observés.

Les trous noirs ?

Beaucoup plus massifs que les MACHO ou les étoiles, les trous noirs auraient pu être de bons candidats. Certains d'entre eux pourraient atteindre une masse de 10 000 masses solaires (notamment les trous noirs supermassifs, au centre des galaxies). Cependant, il faudrait, dans une galaxie, près d'un million de trous noirs d'une telle masse pour combler ce manque de matière ; un nombre trop important au vu des conséquences sur les étoiles à proximité d'un trou noir (En astrophysique, un trou noir est un objet massif dont le champ gravitationnel est si intense qu’il empêche toute forme de matière ou...). En effet, les trous noirs traversent par moment le disque galactique et perturbent le mouvement des étoiles. Avec un tel nombre de trous noirs, les mouvements de ces étoiles serait fortement amplifiés, ce qui rendrait le disque galactique bien plus épais que ce qui est observé actuellement.

Restent les trous noirs stellaires (de l'ordre de quelques masses solaires), difficilement détectables, et les trous noirs de quelques dizaines ou centaines de masses solaires, dont la nature de leur formation reste encore mystérieuse. Dans tous les cas, la piste des trous noirs comme étant la fameuse matière noire a été délaissée, et les astronomes se sont penchés sur une autre forme de matière, non baryonique.

De la matière non baryonique ?

La théorie du Big Bang permet de calculer le nombre de baryons de tout l'Univers, c'est-à-dire le nombre d'atomes d'hélium (L'hélium est un gaz noble ou gaz rare, pratiquement inerte. De numéro atomique 2, il ouvre la série des gaz nobles dans le tableau périodique des éléments. Son point d'ébullition est le plus bas...) 4 et d'hydrogène, formés lors de la nucléosynthèse (La nucléosynthèse est un ensemble de processus physiques conduisant à la synthèse de noyaux atomiques, par fission ou fusion nucléaire.) primordiale. Les astronomes en sont arrivés à un taux de matière baryonique d'environ 4 % de la densité critique. Or, pour expliquer la géométrie (La géométrie est la partie des mathématiques qui étudie les figures de l'espace de dimension 3 (géométrie euclidienne) et, depuis le XVIIIe siècle, les figures d'autres types d'espaces...) plate de l'Univers, la matière totale de l'Univers doit représenter 30 % de la densité critique (les 70 % restants étant de l'énergie noire). Il manque donc 26 % de la densité critique sous forme de matière non baryonique ; c'est-à-dire constituée par d'autres particules que les baryons.

Le neutrino

Le neutrino est une particule postulée pour la première fois en 1930 par Wolfgang Pauli, avant même la découverte du neutron (Le neutron est une particule subatomique. Comme son nom l'indique, le neutron est neutre et n'a donc pas de charge électrique (ni positive, ni négative). Les neutrons, avec les protons, sont les...) (un an plus tard), et qui fut détectée en 1956 par Frederick Reines et Clyde Cowan. Cette particule — insensible aux forces électromagnétiques et à la force nucléaire (Le terme d'énergie nucléaire recouvre deux sens selon le contexte :) forte — est émise lors d'une désintégration bêta, accompagnée d'un électron (L'électron est une particule élémentaire de la famille des leptons, et possèdant une charge électrique élémentaire de signe négatif. C'est un des composants de l'atome.). Le neutrino interagit donc très peu avec les autres particules, ce qui en fait un bon candidat pour la matière noire.

La masse du neutrino était estimée très faible, voire nulle. Avec le problème de la masse manquante de l'Univers, les physiciens se sont demandés si le neutrino n'avait peut-être pas une masse, faible, mais non nulle. D'autant plus que le neutrino est la particule la plus abondante dans l'univers, après le photon (En physique des particules, le photon est la particule élémentaire médiatrice de l'interaction électromagnétique. Autrement dit, lorsque deux particules chargées électriquement...). Cependant, les expériences Super-Kamiokande (L'expérience Super-Kamiokande, situé au Japon près de la ville de Mozumi, consiste en un immense cylindre de 40m de haut et 40m de diamètre rempli de plus de 50 000 tonnes d'eau ! Son emplacement dans une mine, en-dessous d'une...) et SNO (Sudbury Neutrino Observatory) ont révélé une masse beaucoup trop faible pour que cette particule puisse constituer l'essentiel de la matière noire. Les neutrinos peuvent représenter, au mieux, 18 % de la masse totale de l'Univers.

Les WIMP

Les WIMP (Weakly interactive massive particles) forment une classe de particules lourdes, interagissant faiblement avec la matière, et constituent d'excellents candidats à la matière sombre non-baryonique. Parmi celles-ci on trouve, le neutralino postulé par les extensions supersymétrique du modèle standard de la physique des particules (La physique des particules est la branche de la physique qui étudie les constituants élémentaires de la matière et les rayonnements, ainsi que leurs interactions. On l'appelle aussi physique des hautes énergies car de...). L'idée de la supersymétrie (Note : Pour profiter au mieux de cet article, le lecteur devrait avoir de bonnes notions sur le spin, la physique des particules et la symétrie en...) est d'associer à chaque boson (Les bosons représentent une classe de particules qui possèdent des propriétés de symétrie particulières lors de...) un fermion (Il existe deux grandes classes de particules élémentaires: les fermions et les bosons. Les fermions sont les particules à spin demi-entier (c'est-à-dire multiple de 1/2): l'électron, le muon, le neutrino et les quarks sont...) et vice versa. Chaque particule se voit donc attribuer un super-partenaire, ayant des propriétés identiques (masse, charge), mais avec un spin (Le spin est une propriété quantique intrinsèque associée à chaque particule, qui est caractéristique de la nature de la...) différent de 1/2. Ainsi, le nombre de particules est doublé. Par exemple, le photon (En physique des particules, le photon est la particule élémentaire médiatrice de l'interaction électromagnétique. Autrement dit, lorsque deux particules chargées électriquement...) se retrouve accompagné d'un photino, le graviton (Le graviton est une particule élémentaire hypothétique qui transmettrait la gravité dans la plupart des systèmes de gravité quantique. Il serait donc le...) d'un gravitino, l'électron d'un sélectron, etc. Suite à l'impossibilité de détecter un boson de 511 keV (partenaire de l'électron), les physiciens ont dû revoir l'idée d'une symétrie exacte. La symétrie est dite brisée et les superpartenaires se retrouvent avec une masse très importante. L'une de ces superparticules appelée LSP (Lightest Supersymmetric Particle) est la plus légère de toutes. Dans la plupart des théories supersymétriques, dites sans violation de la R-parité, la LSP est une particule stable car elle ne peut se désintégrer en un élément plus léger. Elle est de plus neutre de couleur (La couleur est la perception subjective qu'a l'œil d'une ou plusieurs fréquences d'ondes lumineuses, avec une (ou des) amplitude(s)...) et de charge électrique (La charge électrique est une propriété fondamentale de la matière qui respecte le principe de conservation.) et donc uniquement sensible à l'interaction faible ; elle constitue à ce titre un excellent candidat à la matière sombre non-baryonique.

Cette particule supersymétrique la plus légère est en général (en fonction des modèles), le neutralino, une combinaison (Une combinaison peut être :) de ces trois superparticules : le photino (partenaire du photon), du zino (partenaire du boson Z (Le boson Z0 est un des trois bosons de jauge de l'interaction faible, les deux autres étant le boson W sous deux états opposés de charges électriques notés W+ et W-.)0) ou du higgsino (partenaire du boson de Higgs). Les mesures récentes au CERN indiquent que sa masse est supérieure à 32 GeV/c2. Le neutralino est, en théorie, stable donc très abondant au point de représenter l'essentiel de la matière de l'Univers. Il fait à ce titre l'objet de nombreuses recherches. La détection de neutralinos peut être directe, par interaction dans le détecteur (Un détecteur est un dispositif technique (instrument, substance, matière) qui change d'état en présence de l'élément ou de la situation pour lequel il a...), ou indirecte, via la recherche des produits d'annihilation.

La détection de matière sombre supersymétrique est un domaine de la physique (La physique (du grec φυσις, la nature) est étymologiquement la « science de la nature ». Dans un sens général et ancien, la physique désigne la connaissance de...) extrêmement dynamique, en particulier du point de vue (La vue est le sens qui permet d'observer et d'analyser l'environnement par la réception et l'interprétation des rayonnements lumineux.) des techniques. La localisation des détecteurs est à l'image de cette diversité : en orbite terrestre (AMS, PAMELA), sous la glace (La glace est de l'eau à l'état solide.) du pôle Sud (Le pôle Sud est le point le plus au sud de la surface de la Terre, diamétralement opposé au pôle Nord. Il est situé sur le continent Antarctique.) (AMANDA, IceCube), en milieu marin (ANTARES), ou encore dans les laboratoires souterrains (EDELWEISS, MACHe3).

Une hypothèse inutile ?

Pour de plus en plus d'astronomes, cette matière noire n'existe pas : plutôt que de chercher à expliquer les anomalies par une matière inobservée voire inobservable, il serait selon eux plus judicieux de revoir les lois physiques qui constituent le modèle standard, et qui sont de toute façon remises en question par d'autres problèmes encore plus fondamentaux. Il serait alors possible de résoudre plusieurs problèmes en même temps sans émettre des hypothèses nouvelles.

Théorie des cordes (La théorie des cordes est l'une des voies envisagées pour régler une des questions majeures de la physique théorique : fournir une description de la gravité quantique...) et axions

Certains physiciens se tournent par exemple vers la théorie des cordes. La théorie des cordes ajoute six nouvelles dimensions (Dans le sens commun, la notion de dimension renvoie à la taille ; les dimensions d'une pièce sont sa longueur, sa largeur et sa profondeur/son épaisseur,...) aux quatre usuelles (les trois dimensions de l'espace et le temps) et placerait la matière noire dans ces nouvelles dimensions qui nous sont inaccessibles ; c'est la raison pour laquelle on ne la détecterait pas. Les forces électromagnétiques et nucléaires forte et faible seraient confinées dans nos quatre dimensions et ne pourraient les quitter. En revanche, la gravitation pourrait se disperser dans les autres dimensions, et ainsi baisser en intensité par rapport aux autres forces.

Une autre particule théorique, l'axion, qui serait ultra-légère (1 µeV), stable et qui interagirait également très peu avec la matière — une particule donc pratiquement indétectable — ferait une autre bonne candidate à la matière noire. Cette particule résoudrait entre autres, les problèmes posés par l'antimatière (Il s'agit ici d'une approche plus "philosophique" sur les questions posées par l'antimatière, ou sur ses applications humaines. Pour une approche plus technique sur la nature de l'antimatière et de ses fonctionnements "intimes",...) (pourquoi la matière l'a emporté sur l'antimatière). Différents programmes ont été lancés depuis 1996 pour tenter de détecter des axions, dont le CAST (Cern Solar Axion Telescope).

La théorie MOND

Le manque ne viendrait pas de la matière, mais de la formule de Newton établissant la loi de gravitation. Celle-ci serait valable pour des distances relativement faibles, mais erronées à plus grande échelle. Certains ont essayé de modifier cette loi en faisant décroître l'intensité de la gravitation un peu plus faiblement que Newton (par exemple, A. Finzi dès 1963), sans grand succès jusqu'à présent.

L'astronome israélien Mordehai Milgrom propose en 1983 sa théorie " MOND " (Modified Newtonian Dynamics) dans laquelle il introduit un paramètre (Un paramètre est au sens large un élément d'information à prendre en compte pour prendre une décision ou pour effectuer un calcul.) A0 dans la formule de Newton, modifiant l'accélération qui en découle. Les lois de Newton ne seraient valables que pour des accélérations supérieures à ce A0. Lorsqu'on s'approcherait de cette accélération " critique ", ou même dans le cas d'une accélération inférieure à celle-ci, il faudrait modifier l'expression de cette loi. Ainsi en utilisant cette loi, on obtient bien une vitesse de rotation constante en tout point de la galaxie et indépendante de son rayon.

Reste à déterminer la valeur de A0. Ce paramètre serait d'ailleurs une constante universelle, comme la constante de Planck (En physique, la constante de Planck, notée h, est une constante utilisée pour décrire la taille des quanta. Elle joue un rôle central dans la mécanique quantique et...). La vitesse de rotation constante des galaxies est obtenue avec une valeur de 10-10 m/s² pour A0.

Cependant, cette théorie est sujette à de nombreuses controverses et souffre encore aujourd'hui d'un certain nombre de lacunes : la valeur de A0 pour expliquer les mouvements des amas ne semble pas en accord avec la précédente, qui permettait d'obtenir une vitesse de rotation constante. Or ce paramètre est censé être une constante. De plus, pour les structures encore plus grandes, tels les superamas, cette théorie n'apporte pas de réponses. Cependant, dès 1984, les contributions de Jacob Bekenstein ont apporté à cette alternative une base formelle intéressante.

Et d'autres encore ...

Notes

  1. site de la NASA (La National Aeronautics and Space Administration (« Administration nationale de l'aéronautique et de l'espace ») plus connue sous son abréviation NASA, est l'agence...)2
  2. Site du LAPP6
  3. (en) Astrophysical constants and parameters. PDG. consultable également sur table des constantes astrophysiques.
  4. (en) A direct empirical proof of the existence of dark matter. arXiv.
  5. (en) Dark Matter Observed. SLAC Today.
  6. (en) Direct constraints on the dark matter self-interaction cross-section from the merging galaxy cluster 1E 0657-56
Source: Wikipédia publiée sous licence CC-BY-SA 3.0.

Vous pouvez soumettre une modification à cette définition sur cette page. La liste des auteurs de cet article est disponible ici.