Recherchez sur tout Techno-Science.net
       
Techno-Science.net : Suivez l'actualité des sciences et des technologies, découvrez, commentez
Catégories
Techniques
Sciences
Encore plus...
Techno-Science.net
Partenaires
Organismes
 CEA
 ESA
Sites Web
Photo Mystérieuse

Que représente
cette image ?
 A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | +
Trou noir
Image simulée d’un trou noir stellaire situé à quelques dizaines de kilomètres d’un observateur et dont l’image se dessine sur la voûte céleste dans la direction du Grand Nuage de Magellan. L’image de celui-ci apparaît dédoublée sous la forme de deux arcs de cercle, en raison de l’effet de lentille gravitationnelle fort. La Voie lactée qui apparaît en haut de l’image est également fortement distordue, au point que certaines constellations sont difficiles à reconnaître, comme par exemple la Croix du Sud (au niveau de l’étoile orange lumineuse, Gacrux, en haut à gauche de l’image) dont la forme de croix caractéristique est méconnaissable. Une étoile relativement peu lumineuse (HD 49359, magnitude apparente 7,5) est située presque exactement derrière le trou noir. Elle apparaît ainsi sous la forme d’une image double, dont la luminosité apparente est extraordinairement amplifiée, d’un facteur d’environ 4 500, pour atteindre une magnitude apparente de -1,7. Les deux images de cette étoile, ainsi que les deux images du Grand Nuage sont situées sur une zone circulaire entourant le trou noir, appelée anneau d’Einstein.
Image simulée d’un trou noir stellaire situé à quelques dizaines de kilomètres d’un observateur et dont l’image se dessine sur la voûte céleste dans la direction du Grand Nuage de Magellan. L’image de celui-ci apparaît dédoublée sous la forme de deux arcs de cercle (Un cercle est une courbe plane fermée constituée des points situés à égale distance d'un point nommé centre. La valeur de...), en raison de l’effet de lentille gravitationnelle (Les lentilles gravitationnelles déforment l'image que l'on reçoit d'un objet astronomique comme une galaxie.) fort. La Voie lactée (La Voie lactée (appelée aussi « notre galaxie », ou parfois simplement « la Galaxie », avec une majuscule) est le nom de la galaxie dans laquelle se situent le Système...) qui apparaît en haut de l’image est également fortement distordue, au point (Graphie) que certaines constellations sont difficiles à reconnaître, comme par exemple la Croix du Sud (Le sud est un point cardinal, opposé au nord.) (au niveau de l’étoile (Une étoile est un objet céleste émettant de la lumière de façon autonome, semblable à une énorme boule de plasma comme le Soleil, qui est l'étoile la plus proche de la Terre.) orange lumineuse, Gacrux, en haut à gauche de l’image) dont la forme de croix caractéristique est méconnaissable. Une étoile relativement peu lumineuse (HD 49359, magnitude apparente (En astronomie, la magnitude apparente mesure la luminosité — depuis la Terre — d'une étoile, d'une planète ou d'un autre objet céleste. Cette grandeur a la particularité...) 7,5) est située presque exactement derrière le trou noir (En astrophysique, un trou noir est un objet massif dont le champ gravitationnel est si intense qu’il empêche toute forme de matière ou de...). Elle apparaît ainsi sous la forme d’une image double, dont la luminosité (La luminosité désigne la caractéristique de ce qui émet ou réfléchit la lumière.) apparente est extraordinairement amplifiée, d’un facteur d’environ 4 500, pour atteindre une magnitude apparente de -1,7. Les deux images de cette étoile, ainsi que les deux images du Grand Nuage (Un nuage est une grande quantité de gouttelettes d’eau (ou de cristaux de glace) en suspension dans l’atmosphère. L’aspect d'un nuage dépend de la lumière qu’il reçoit, de la...) sont situées sur une zone circulaire entourant le trou noir, appelée anneau d’Einstein.

En astrophysique (L’astrophysique est une branche interdisciplinaire de l'astronomie qui concerne principalement la physique et l'étude des propriétés des objets de l'univers (étoiles, planètes, galaxies,...), un trou noir est un objet (De manière générale, le mot objet (du latin objectum, 1361) désigne une entité définie dans un espace à trois dimensions, qui a une fonction précise, et qui peut être désigné par une étiquette verbale. Il est défini par les...) massif (Le mot massif peut être employé comme :) dont le champ (Un champ correspond à une notion d'espace défini:) gravitationnel est si intense qu’il empêche toute forme de matière (La matière est la substance qui compose tout corps ayant une réalité tangible. Ses trois états les plus communs sont l'état solide,...) ou de rayonnement (Le rayonnement est un transfert d'énergie sous forme d'ondes ou de particules, qui peut se produire par rayonnement électromagnétique (par exemple : infrarouge) ou par...) de s’en échapper. De tels objets n’émettent donc pas de lumière (La lumière est l'ensemble des ondes électromagnétiques visibles par l'œil humain, c'est-à-dire comprises dans des longueurs d'onde de 380nm...) et sont alors noirs. Les trous noirs sont décrits par la théorie de la relativité (Cet article traite de la théorie de la relativité à travers les âges. En physique, la notion de relativité date de Galilée. Les travaux d'Einstein en ont fait un important champ d'étude, tant théorique qu'expérimental.) générale. Ils ne sont pas directement observables, mais plusieurs techniques d’observation (L’observation est l’action de suivi attentif des phénomènes, sans volonté de les modifier, à l’aide de moyens d’enquête et d’étude...) indirecte dans différentes longueurs d’onde (Une onde est la propagation d'une perturbation produisant sur son passage une variation réversible de propriétés physiques locales. Elle transporte de l'énergie sans...) ont été mises au point et permettent d’étudier les phénomènes qu’ils induisent sur leur environnement (L'environnement est tout ce qui nous entoure. C'est l'ensemble des éléments naturels et artificiels au sein duquel se déroule la vie humaine. Avec les enjeux écologiques actuels, le terme environnement tend...). En particulier, la matière qui est happée par un trou noir est chauffée à des températures considérables avant d'être engloutie et émet de ce fait une quantité (La quantité est un terme générique de la métrologie (compte, montant) ; un scalaire, vecteur, nombre d’objets ou d’une autre manière de dénommer la valeur d’une collection ou un groupe de choses.) importante de rayons X. Ainsi, même si un trou noir n'émet pas lui-même de rayonnement, il peut néanmoins être détectable par son action sur son environnement. L'existence des trous noirs est une certitude pour la quasi-totalité de la communauté scientifique (Un scientifique est une personne qui se consacre à l'étude d'une science ou des sciences et qui se consacre à l'étude d'un domaine avec la rigueur et les méthodes scientifiques.) concernée (astrophysiciens et physiciens théoriciens).

Présentation et terminologie

Un trou noir possède une masse (Le terme masse est utilisé pour désigner deux grandeurs attachées à un corps : l'une quantifie l'inertie du corps (la masse inerte) et l'autre...) donnée (Dans les technologies de l'information (TI), une donnée est une description élémentaire, souvent codée, d'une chose, d'une transaction d'affaire, d'un...), qui est concentrée en un point, appelé singularité (D'une manière générale, le mot singularité décrit le caractère singulier de quelque chose ou de quelqu'un. En particulier, le terme est employé dans les domaines suivants :) gravitationnelle. Cette masse permet de définir une sphère (Une sphère est une surface à 3 dimensions dont tous les points sont situés à une même distance d'un point appelé centre. La valeur de cette distance commune au centre est appelée le rayon de la sphère. Elle...) appelée horizon (Conceptuellement, l’horizon est la limite de ce que l'on peut observer, du fait de sa propre position ou situation. Ce concept simple se décline en physique, philosophie, littérature, et bien d'autres domaines :) du trou noir, centrée sur la singularité et dont le rayon est une limite maximale en deçà duquel le trou noir empêche tout (Le tout compris comme ensemble de ce qui existe est souvent interprété comme le monde ou l'univers.) rayonnement de s’échapper. Cette sphère représente en quelque sorte l’extension spatiale du trou noir. Pour un trou noir de masse égale à la masse du Soleil (Soleils est une association à but humanitaire implantée sur le campus de Supélec (École Supérieure d'Electricité).), le rayon vaut environ 3 kilomètres[1]. À une distance interstellaire (en millions de kilomètres), un trou noir n’exerce pas plus d’attraction que n’importe quel autre corps de même masse ; il ne s’agit donc pas d’un " aspirateur " irrésistible. Par exemple, si le Soleil (Le Soleil (Sol en latin, Helios ou Ήλιος en grec) est l'étoile centrale du système solaire. Dans la classification astronomique, c'est une étoile de...) se trouvait remplacé par un trou noir de même masse, les orbites de ses planètes resteraient inchangées.

Il existe plusieurs sortes de trous noirs. Lorsqu’ils se forment à la suite de l’effondrement gravitationnel d’une étoile, on parle de trou noir stellaire (Un trou noir stellaire résulte de l'effondrement d'une étoile massive sur elle même. Cet effondrement se manifeste directement l'apparition d'une supernova, possiblement associé...). Quand on les trouve au centre des galaxies, ils ont une masse pouvant aller jusqu’à plusieurs milliards de masses solaires et on parle alors de trou noir supermassif (En astrophysique, un trou noir supermassif est un trou noir dont la masse est d'environ un million à un milliard de masses solaires. C'est le type de trou noir le plus grand, après le -- encore hypothétique -- trou noir...) (ou trou noir galactique). Entre ces deux échelles de masse, on pense qu’il existe des trous noirs intermédiaires avec une masse de quelques milliers de masses solaires. Des trous noirs de masse bien plus faible, qui auraient été formés au début de l’histoire de l’univers (L'Univers est l'ensemble de tout ce qui existe et les lois qui le régissent.), au Big Bang (Le Big Bang est l’époque dense et chaude qu’a connu l’univers il y a environ 13,7 milliards d’années, ainsi que l’ensemble des modèles cosmologiques qui la...), sont aussi envisagés, et sont appelés trous noirs primordiaux. Leur existence n’est à l’heure (L’heure est une unité de mesure du temps. Le mot désigne aussi la grandeur elle-même, l'instant (l'« heure qu'il est »), y compris en sciences (« heure solaire » employé pour temps...) actuelle pas confirmée.

Il est difficile d’observer directement un trou noir. Il est cependant possible de déduire sa présence par son action gravitationnelle sur son environnement, notamment au sein (Le sein (du latin sinus, « courbure, sinuosité, pli ») ou la poitrine dans son ensemble, constitue la région ventrale supérieure du torse d'un animal, et en particulier celle des...) des microquasars et des noyaux actifs de galaxies, où de la matière à proximité tombant sur le trou noir va se trouver considérablement chauffée et émettre un fort rayonnement X. Les observations permettent ainsi de déceler l’existence d’objets massifs et de très petite taille. Les seuls objets que ces observations impliquent, et qui sont compatibles dans le cadre de la relativité générale (La relativité générale est une théorie relativiste de la gravitation. Dans ce cadre, la présence d'une masse déforme localement l’espace-temps. Le physicien Thibault Damour utilise à ce sujet l'expression imagée d'un espace-temps...), sont les trous noirs.

Historique

Le concept de trou noir a émergé à la fin du XVIIIe siècle dans le cadre de la gravitation (La gravitation est une des quatre interactions fondamentales de la physique.) universelle d’Isaac Newton (Sir Isaac Newton était un philosophe, mathématicien, physicien et astronome anglais né le 4 janvier 1643 du calendrier grégorien[1] au manoir de Woolsthorpe près de Grantham et mort le 31 mars 1727[1] à Kensington. Figure...). La question était de savoir s’il existait des objets dont la masse était suffisamment grande pour que leur vitesse de libération (La vitesse de libération (aussi appelée vitesse d'évasion, vitesse parabolique, vitesse de fuite, ou vitesse d'échappement, en anglais escape velocity) d'une planète est la vitesse qui, si elle est impartie à un...) soit plus grande que la vitesse de la lumière (La vitesse de la lumière (299 792 458 m/s) a été mesurée dès le XVIIe siècle par l'astronome danois Ole Christensen Rømer qui avait observé en 1676 un retard de quinze minutes dans l'occultation prédite d'Io, un...). Cependant, ce n’est qu’au début du XXe siècle et avec l’avènement de la relativité générale d’Albert Einstein (Albert Einstein (né le 14 mars 1879 à Ulm, Wurtemberg, et mort le 18 avril 1955 à Princeton, New Jersey) est un physicien qui...) que le concept de trou noir devient plus qu’une curiosité. En effet, peu après la publication des travaux d’Einstein, une solution de l’équation (En mathématiques, une équation est une égalité qui lie différentes quantités, généralement pour poser le problème de leur identité. Résoudre l'équation consiste à déterminer toutes les façons de donner à certaines des quantités...) d’Einstein impliquant l’existence d’un trou noir central est publiée par Karl Schwarzschild[2]. Les travaux fondamentaux sur les trous noirs remontent aux années 1960, précédant de peu les premières indications observationnelles solides en faveur de leur existence. La première " observation "[3],[4] d’un objet contenant un trou noir fut celle de la source de rayons X Cygnus X-1 (En astronomie, Cygnus X-1 est une binaire X et fut le premier candidat trou noir.) par le satellite (Satellite peut faire référence à :) Uhuru en 1971. Le terme de " trou noir " a émergé dans le courant des années 1960, par l’intermédiaire du physicien (Un physicien est un scientifique qui étudie le champ de la physique, c'est-à-dire la science analysant les constituants fondamentaux de l'univers et les forces qui les relient. Le mot physicien dérive du...) américain Kip Thorne. Auparavant, on utilisait les termes de " corps de Schwarzschild " ou d’" astre occlus ". À noter que le terme de " trou noir " a rencontré des réticences dans certaines communautés linguistiques, notamment francophones et russophones, qui le jugeaient quelque peu inconvenant[5].

Propriétés

Un trou noir est un objet astrophysique comme un autre. Il se caractérise par le fait qu’il est très difficile à observer directement (voir ci-dessous), et que sa région centrale ne peut être décrite de façon satisfaisante par les théories physiques en leur état du début du XXIe siècle car elle abrite une singularité gravitationnelle. Cette dernière ne peut être décrite que dans le cadre d’une théorie (Le mot théorie vient du mot grec theorein, qui signifie « contempler, observer, examiner ». Dans le langage courant, une théorie est une idée ou une connaissance spéculative,...) de la gravitation quantique, manquante à ce jour (Le jour ou la journée est l'intervalle qui sépare le lever du coucher du Soleil ; c'est la période entre deux nuits, pendant laquelle les rayons du Soleil éclairent le ciel. Son...)[6]. Par contre, on sait parfaitement décrire les conditions physiques qui règnent dans son voisinage (La notion de voisinage correspond à une approche axiomatique équivalente à celle de la topologie. La topologie traite plus naturellement les notions globales comme la continuité qui...) immédiat, de même que son influence sur son environnement, ce qui permet de les détecter par diverses méthodes indirectes.

Par ailleurs, les trous noirs sont étonnants en ce qu’ils sont décrits par un très petit nombre (La notion de nombre en linguistique est traitée à l’article « Nombre grammatical ».) de paramètres. En effet, leur description, dans l’univers dans lequel nous vivons, ne dépend que de trois paramètres : la masse, la charge électrique (La charge électrique est une propriété fondamentale de la matière qui respecte le principe de conservation.) et le moment cinétique (Le mot cinétique fait référence à la vitesse.). Tous les autres paramètres du trou noir (par exemple sa taille ou sa forme) sont fixés par ceux-là. Par comparaison, la description d’une planète (Une planète est un corps céleste orbitant autour du Soleil ou d'une autre étoile de l'Univers et possédant une masse suffisante pour que sa...) fait intervenir des centaines de paramètres (composition chimique, différenciation de ses éléments, convection (La convection est un mode de transfert de chaleur où celle-ci est advectée (transportée-conduite, mais ces termes sont en fait impropres) par au moins un fluide. Ainsi durant la cuisson des pâtes, l'eau...), atmosphère (Le mot atmosphère peut avoir plusieurs significations :), etc.). La raison pour laquelle un trou noir n’est décrit que par ces trois paramètres est connue depuis 1967 : c’est le théorème (Un théorème est une proposition qui peut être mathématiquement démontrée, c'est-à-dire une assertion qui peut être établie comme vraie au travers d'un raisonnement logique construit à...) de calvitie démontré par Werner Israël. Celui-ci explique que les seules interactions fondamentales à longue portée étant la gravitation et l’électromagnétisme (L'électromagnétisme est une branche de la physique qui fournit un cadre très général d'étude des phénomènes électriques et magnétiques dans leur synthèse du champ...), les seules propriétés mesurables des trous noirs sont données par les paramètres décrivant ces interactions, à savoir la masse, le moment cinétique et la charge (La charge utile (payload en anglais ; la charge payante) représente ce qui est effectivement transporté par un moyen de transport donné, et qui donne lieu à un...) électrique.

Pour un trou noir, la masse et la charge électrique sont des propriétés habituelles que décrit la physique (La physique (du grec φυσις, la nature) est étymologiquement la « science de la nature ». Dans un sens général et ancien, la physique désigne la connaissance de la nature ;...) classique (i.e. non-relativiste) : le trou noir possède un champ gravitationnel proportionnel à sa masse et un champ électrique (Dans le cadre de l'électromagnétisme, le champ électrique est un objet physique qui permet de définir et éventuellement de mesurer en tout point de l'espace l'influence exercée à distance par des...) proportionnel à sa charge. L'influence du moment cinétique est par contre spécifique à la relativité générale. Celle-là stipule (En botanique, les stipules sont des pièces foliaires, au nombre de deux, en forme de feuilles réduites située de part et d'autre du pétiole, à sa base, au point d'insertion sur la tige.) en effet qu'un corps en rotation va avoir tendance à " entraîner " l'espace-temps (La notion d'espace-temps a été introduite par Minkowski en 1908 dans un exposé mathématique sur la géométrie de l'espace et du temps telle qu'elle avait...) dans son voisinage. Ce phénomène, non encore observé à l'heure actuelle dans le système solaire (Le système solaire est un système planétaire composé d'une étoile, le Soleil et des corps célestes ou objets définis gravitant autour de lui (autrement dit, notre...) en raison de son extrême faiblesse pour des astres non compacts, est connu sous le nom d'effet Lense-Thirring (aussi appelé frame dragging, en anglais)[7]. Il prend une amplitude (Dans cette simple équation d’onde :) considérable au voisinage d'un trou noir en rotation, au point qu'un observateur situé dans son voisinage immédiat serait inévitablement entraîné dans le sens (SENS (Strategies for Engineered Negligible Senescence) est un projet scientifique qui a pour but l'extension radicale de l'espérance de vie humaine. Par une évolution progressive...) de rotation du trou noir. La région où ceci se produit est appelée ergorégion.

Quatre types théoriques possibles…

Types théoriques de trous noirs en fonction du moment cinétique (J) et de la charge électrique (Q). La masse (M) est toujours strictement positive.
  M > 0
  J = 0 J ≠ 0
Q = 0 Schwarzschild Kerr
Q ≠ 0 Reissner-Nordström Kerr-Newman

Un trou noir possède toujours une masse non nulle. En revanche, ses deux autres caractéristiques, à savoir le moment cinétique (rotation) et la charge électrique, peuvent en principe prendre des valeurs nulles (c’est-à-dire égales à zéro) ou non nulles. La combinaison (Une combinaison peut être :) de ces états permet de définir quatre types de trous noirs.

Quand la charge électrique et le moment cinétique sont nuls, on parle de trou noir de Schwarzschild, du nom de Karl Schwarzschild qui le premier a mis en évidence ces objets comme solutions des équations de la relativité générale (les équations d'Einstein), en 1916.

Quand la charge électrique est non nulle et le moment cinétique nul, on parle de trou noir de Reissner-Nordström. Ces trous noirs ne présentent pas d’intérêt astrophysique notable car aucun processus connu ne permet de fabriquer un objet compact conservant durablement une charge électrique significative ; celle-ci se dissipe normalement rapidement par absorption ( En optique, l'absorption se réfère au processus par lequel l'énergie d'un photon est prise par une autre entité, par exemple, un atome qui fait une transition entre deux niveaux d'énergie électronique....) de charges électriques opposées prises à son environnement[8]. Un trou noir de Reissner-Nordström est donc un objet théorique très improbable dans la nature.

Si le trou noir possède un moment cinétique (c’est-à-dire qu’il est en rotation sur lui-même) mais n’a pas de charge électrique, on parle de trou noir de Kerr, du nom du mathématicien néo-zélandais Roy Kerr qui a trouvé la formule décrivant ces objets en 1963. Contrairement aux trous noirs de Reissner-Nordström et de Schwarzschild, les trous noirs de Kerr présentent un intérêt astrophysique considérable, car les modèles de formation et d’évolution des trous noirs indiquent que ceux-ci ont tendance à absorber la matière environnante par l’intermédiaire d’un disque (Le mot disque est employé, aussi bien en géométrie que dans la vie courante, pour désigner une forme ronde et régulière, à l'image d'un palet — discus en latin.) d’accrétion (L'accrétion désigne en astrophysique, en géologie et en météorologie l'accroissement par apport de matière.) dans lequel la matière tombe en spiralant toujours dans le même sens dans le trou noir. Ainsi, la matière communique du moment cinétique au trou noir qui l’engloutit. Les trous noirs de Kerr sont donc les seuls que l’on s’attend réellement à rencontrer en astronomie (L’astronomie est la science de l’observation des astres, cherchant à expliquer leur origine, leur évolution, leurs propriétés physiques et chimiques. Elle ne doit pas...). Cependant, il reste possible que des trous noirs à moment cinétique très faible, s’apparentant en pratique à des trous noirs de Schwarzschild, existent.

La version électriquement chargée du trou noir de Kerr, dotée comme lui d’une rotation, est connue sous le nom de trou noir de Kerr-Newman et ne présente comme le trou noir de Reissner-Nordström ou celui de Schwarzschild que peu d’intérêt astrophysique eu égard à sa très faible probabilité (La probabilité (du latin probabilitas) est une évaluation du caractère probable d'un évènement. En mathématiques, l'étude des probabilités est un...).

…Et une multitude d’autres

D’un point de vue (La vue est le sens qui permet d'observer et d'analyser l'environnement par la réception et l'interprétation des rayonnements lumineux.) théorique, il peut exister une multitude d’autres types de trous noirs avec des propriétés différentes. Par exemple, il existe un analogue du trou noir de Reissner-Nordström, mais en remplaçant la charge électrique par une charge magnétique, c’est-à-dire créée par des monopôles magnétiques, dont l’existence reste extrêmement hypothétique à ce jour. On peut de même généraliser le concept de trou noir à des espaces comprenant plus de trois dimensions (Dans le sens commun, la notion de dimension renvoie à la taille ; les dimensions d'une pièce sont sa longueur, sa largeur et sa profondeur/son épaisseur, ou bien son diamètre si...). Ceci permet d’exhiber des types de trous noirs ayant des propriétés parfois différentes de celles des trous noirs présentés ci-dessus[9].

Le trou et le noir…

L’existence des trous noirs est envisagée dès le XVIIIe siècle[10]. Il s’agissait alors d’objets prédits comme tellement denses que leur vitesse (On distingue :) de libération était supérieure à la vitesse de la lumière — c’est-à-dire que même la lumière ne peut vaincre leur force (Le mot force peut désigner un pouvoir mécanique sur les choses, et aussi, métaphoriquement, un pouvoir de la volonté ou encore une vertu morale « cardinale »...) gravitationnelle. Plutôt qu’une telle force (qui est un concept newtonien), il est plus juste de dire que la lumière subit en fait un décalage vers le rouge (Le décalage vers le rouge ou redshift est un phénomène astronomique de décalage vers les grandes longueurs d'onde des raies spectrales et de l'ensemble du spectre – ce qui se...) infini (Le mot « infini » (-e, -s ; du latin finitus, « limité »), est un adjectif servant à qualifier quelque...). Ce décalage vers le rouge (La couleur rouge répond à différentes définitions, selon le système chromatique dont on fait usage.) est d’origine gravitationnelle : la lumière perd la totalité de son énergie (Dans le sens commun l'énergie désigne tout ce qui permet d'effectuer un travail, fabriquer de la chaleur, de la lumière, de produire un mouvement.) en essayant de sortir du puits de potentiel d’un trou noir. Ce décalage vers le rouge est donc d’une nature quelque peu différente (En mathématiques, la différente est définie en théorie algébrique des nombres pour mesurer l'éventuel défaut de...) de celui dû à l’expansion de l’univers, que l’on observe pour les galaxies lointaines et qui résulte d’une expansion d’un espace ne présentant pas de puits de potentiels très profonds. De cette caractéristique provient l’adjectif " noir ", puisqu’un trou noir ne peut émettre de lumière. Ce qui est valable pour la lumière l’est aussi pour la matière : aucune particule ne peut s’échapper d’un trou noir une fois capturée par celui-ci, d’où le terme de " trou " fort approprié.

Horizon (Conceptuellement, l’horizon est la limite de ce que l'on peut observer, du fait de sa propre position ou situation. Ce concept simple se décline en physique, philosophie, littérature, et bien d'autres domaines :) des évènements

La zone qui délimite la région d’où lumière et matière ne peuvent s’échapper, est appelée " horizon des évènements ". On parle parfois de " surface " du trou noir, quoique le terme soit quelque peu impropre (il ne s’agit pas d’une surface (Une surface désigne généralement la couche superficielle d'un objet. Le terme a plusieurs acceptions, parfois objet géométrique, parfois...) solide ou gazeuse comme la surface d’une planète ou d’une étoile). Il ne s’agit pas d’une région qui présente des caractéristiques particulières : un observateur qui franchirait l’horizon ne ressentirait rien de spécial à ce moment-là (voir ci-dessous). Par contre, il se rendrait compte qu’il ne peut plus s’échapper de cette région s’il essayait de faire demi-tour. C'est une sorte de point de non retour. En substance, c’est une situation (En géographie, la situation est un concept spatial permettant la localisation relative d'un espace par rapport à son environnement proche ou non. Il inscrit un lieu dans un cadre plus général afin de le qualifier à travers...) qui est un peu analogue à celle d’un baigneur qui s’éloignerait de la côte. Si par exemple le baigneur ne peut nager que deux kilomètres, il ne ressentira rien s’il s’éloigne à plus d’un kilomètre (Le mètre (symbole m, du grec metron, mesure) est l'unité de base de longueur du Système international. Il est défini comme la distance parcourue par la lumière dans le...) de la côte. Par contre, s’il fait demi-tour, il se rendra compte qu’il n’a pas assez d’énergie pour atteindre la rive.

En revanche, un observateur situé au voisinage de l’horizon remarquera que le temps (Le temps est un concept développé par l'être humain pour appréhender le changement dans le monde.) s’écoule différemment pour lui et pour un observateur situé loin du trou noir. Si ce dernier lui envoie des signaux lumineux à intervalles réguliers (par exemple une seconde), alors l’observateur proche du trou noir recevra des signaux plus énergétiques (la fréquence (En physique, la fréquence désigne en général la mesure du nombre de fois qu'un phénomène périodique se reproduit par unité de temps. Ainsi lorsqu'on emploie...) des signaux lumineux sera plus élevée, conséquence du décalage vers le bleu (Bleu (de l'ancien haut-allemand « blao » = brillant) est une des trois couleurs primaires. Sa longueur d'onde est comprise approximativement entre 446 et 520 nm. Elle varie en luminosité du cyan à une...) subi par la lumière qui tombe vers le trou noir), et les intervalles de temps séparant deux signaux consécutifs seront plus rapprochés (moins d’une seconde ( Seconde est le féminin de l'adjectif second, qui vient immédiatement après le premier ou qui s'ajoute à quelque chose de nature identique. La seconde est une unité de mesure du temps. La seconde d'arc est une mesure d'angle plan. La...), donc). Cet observateur aura donc l’impression que le temps s’écoule plus vite pour son confrère resté loin du trou noir que pour lui. À l’inverse (En mathématiques, l'inverse d'un élément x d'un ensemble muni d'une loi de composition interne · notée multiplicativement, est un...), l’observateur resté loin du trou noir verra son collègue évoluer de plus en plus lentement, le temps chez celui-ci donnant l’impression de s’écouler plus lentement.

Si l’observateur distant voit un objet tomber dans un trou noir, les deux phénomènes de dilatation (La dilatation est l'expansion du volume d'un corps occasionné par son réchauffement, généralement imperceptible. Dans le cas d'un gaz, il y a dilatation à pression constante ou maintien du volume et augmentation de la pression.) du temps et de décalage vers le rouge vont se combiner. Les éventuels signaux émis par l’objet seront de plus en plus rouges, de moins en moins lumineux (la lumière émise perd de plus en plus d’énergie avant d’arriver à l’observateur lointain), et de plus en plus espacés. En pratique, le nombre de photons (En physique des particules, le photon est la particule élémentaire médiatrice de l'interaction électromagnétique. Autrement dit, lorsque deux particules chargées électriquement interagissent, cette interaction se traduit...) reçus par l’observateur distant va décroître très rapidement, jusqu’à devenir nul : à ce moment-là l’objet en train (Un train est un véhicule guidé circulant sur des rails. Un train est composé de plusieurs voitures (pour transporter des personnes) et/ou de plusieurs wagons (pour transporter des...) de chuter dans le trou noir est devenu invisible. Même si l’observateur distant tente d’approcher l’horizon en vue de récupérer l’objet qu’il a eu l’impression de voir s’arrêter juste avant l’horizon, celui-ci demeurera invisible[11].

Pour un observateur s’approchant d’une singularité, ce sont les effets de marée (La marée est le mouvement montant (flux ou flot) puis descendant (reflux ou jusant) des eaux des mers et des océans causé par l'effet...) qui vont devenir importants. Ces effets, qui déterminent les déformations d’un objet (le corps d’un astronaute (Un astronaute est le nom donné à une personne qui voyage ou ayant voyagé dans l'espace. Le terme désigne généralement un professionnel, pilote ou passager d'un véhicule spatial. Youri Gagarine est en...), par exemple) du fait des inhomogénéités du champ gravitationnel, seront inéluctablement ressentis par un observateur s’approchant de trop près d’un trou noir ou d’une singularité. La région où ces effets de marée deviennent importants est entièrement située dans l’horizon pour les trous noirs supermassifs, mais empiète notablement hors de l’horizon pour des trous noirs stellaires[12]. Ainsi, un observateur s’approchant d’un trou noir stellaire serait déchiqueté avant de passer (Le genre Passer a été créé par le zoologiste français Mathurin Jacques Brisson (1723-1806) en 1760.) l’horizon, alors que le même observateur qui s’approcherait d’un trou noir supermassif passerait l’horizon sans encombre. Il serait par contre inéluctablement détruit ensuite par les effets de marée.

Singularité

Au centre d’un trou noir se situe une région dans laquelle le champ gravitationnel et les distorsions de l’espace (on parle plutôt de courbure (Intuitivement, courbe s'oppose à droit : la courbure d'un objet géométrique est une mesure quantitative du caractère « plus ou moins courbé » de cet objet. Par exemple :) de l’espace) deviennent infinis. Cette région s’appelle une singularité gravitationnelle. La description de cette région est délicate dans le cadre de la relativité générale puisque celle-ci ne peut décrire des régions où la courbure devient infinie.

De plus, la relativité générale est une théorie qui ne peut pas incorporer en général des effets gravitationnels d’origine quantique. Or quand la courbure tend vers l’infini, on peut montrer que celle-ci est nécessairement sujette à des effets de nature quantique. Par conséquent, seule une théorie de la gravitation incorporant tous les effets quantiques (on parle alors de gravitation quantique) est en mesure de décrire correctement les singularités gravitationnelles.

La description d’une singularité gravitationnelle est donc pour l’heure problématique [6]. Néanmoins, tant que celle-ci est située à l’intérieur d’un trou noir, elle ne peut influencer l’extérieur d’un trou noir, de la même façon que de la matière située à l’intérieur d’un trou noir ne peut en ressortir. Ainsi, aussi mystérieuses que soient les singularités gravitationnelles, notre incapacité à les décrire, signe de l’existence de limitations de la relativité générale à décrire tous les phénomènes gravitationnels, n’empêche pas la description des trous noirs pour la partie située de notre côté de l’horizon des événements (L'horizon des événements est constitué par la région de l'espace-temps dans laquelle un événement peut-être perçu par un observateur.).

Formation des trous noirs (En astrophysique, un trou noir est un objet massif dont le champ gravitationnel est si intense qu’il empêche toute forme de matière ou de rayonnement de s’en échapper. De tels objets...)

La possibilité de l’existence des trous noirs n’est pas une conséquence exclusive de la relativité générale : la quasi-totalité des autres théories de la gravitation physiquement réalistes permet également leur existence. La relativité générale, à l’instar de la plupart de ces autres théories de la gravité (La gravitation est une des quatre interactions fondamentales de la physique.), non seulement prédit que les trous noirs peuvent exister, mais aussi qu’ils seront formés partout où suffisamment de matière peut être compactée dans une région de l’espace. Par exemple, si l’on compressait le Soleil dans une sphère d’environ trois kilomètres de rayon (soit à peu près quatre millionièmes de sa taille), il deviendrait un trou noir. Si la Terre (La Terre est la troisième planète du Système solaire par ordre de distance croissante au Soleil, et la quatrième par taille et par masse croissantes. C'est la plus grande et la plus massive des quatre planètes...) était compressée dans un volume (Le volume, en sciences physiques ou mathématiques, est une grandeur qui mesure l'extension d'un objet ou d'une partie de l'espace.) de quelques centimètres cube (En géométrie euclidienne, un cube est un prisme dont toutes les faces sont carrées. Les cubes figurent parmi les solides les plus remarquables de l'espace. C'est un...), elle deviendrait également un trou noir.

Pour l’astrophysique, un trou noir peut être considéré comme le stade (Un stade (du grec ancien στ?διον stadion, du verbe ?στημι istêmi, « se tenir droit et ferme ») est un équipement...) ultime d’un effondrement gravitationnel. Les deux stades de la matière qui, en terme de compacité, précèdent l’état de trou noir, sont ceux atteints par exemple par les naines blanches et les étoiles à neutrons. Dans le premier cas, c’est la pression (La pression est une notion physique fondamentale. On peut la voir comme une force rapportée à la surface sur laquelle elle s'applique.) de dégénérescence des électrons qui maintient la naine blanche dans un état d’équilibre face à la gravité. Dans le second, il ne s'agit pas de la pression de dégénérescence des nucléons, mais de l'interaction (Une interaction est un échange d'information, d'affects ou d'énergie entre deux agents au sein d'un système. C'est une action réciproque qui suppose l'entrée en contact de sujets.) forte qui maintient l’équilibre[13]. Un trou noir ne peut se former suite à l'effondrement d'une naine blanche : celle-ci, en s'effondrant initie des réactions nucléaires qui forment des nucléons plus lourds que ceux qui la composent[14]. Ce faisant, le dégagement d'énergie qui en résulte est suffisant pour disloquer complètement (Le complètement ou complètement automatique, ou encore par anglicisme complétion ou autocomplétion, est une fonctionnalité informatique permettant à l'utilisateur de limiter...) la naine blanche, qui explose en supernova dite thermonucléaire (ou de type Ia).

Un trou noir se forme lorsque la force de gravité est suffisamment grande pour dépasser l’effet de la pression, chose qui se produit quand l'astre progéniteur dépasse une certaine masse critique. Dans ce cas, plus aucune force connue ne permet de maintenir l’équilibre, et l’objet en question s’effondre complètement. En pratique, plusieurs cas de figures sont possibles : soit une étoile à neutrons accrète de la matière issue d'une autre étoile, jusqu'à atteindre une masse critique, soit elle fusionne avec une autre étoile à neutron (Le neutron est une particule subatomique. Comme son nom l'indique, le neutron est neutre et n'a donc pas de charge électrique (ni positive, ni négative). Les neutrons, avec les protons, sont...) (phénomène a priori beaucoup plus rare), soit le cœur d'une étoile massive (Le mot massif peut être employé comme :) s'effondre directement en trou noir[15].

L’hypothèse de l’existence d’un état plus compact que celui d’étoile à neutrons a été proposée dans le courant des années 1980 ; ce serait celui des étoiles à quarks aussi appelées étoiles étranges en raison du nom donné pour des raisons historiques à certains des quarks constituant l’objet, appelés " quarks étranges "[16]. Des indications d’une possible détection indirecte de tels astres ont été obtenues depuis le courant des années 1990, sans trancher pour autant définitivement la question[17], mais cela ne change rien au fait qu'au delà d'une certaine masse ce type d'astre finisse par s'effondrer en trou noir, seule la valeur de la masse limite change.

En 2006, on distingue quatre grandes classes de trous noirs en fonction de leur masse : les trous noirs stellaires, supermassifs, intermédiaires et primordiaux (ou micro trous noirs). L’existence voire l’abondance de chaque type de trou noir est directement liée à la possibilité de leur formation.

Trous noirs stellaires

Illustration de la formation de jets. Au sein d’un système binaire composé d’un trou noir et d’une étoile, cette dernière voit son gaz arraché et aspiré vers le trou noir. En s’approchant le gaz engendre un disque d’accrétion qui fournit la matière dont est composée le jet.
Illustration de la formation de jets. Au sein d’un système binaire (Le système binaire est un système de numération utilisant la base 2. On nomme couramment bit (de l'anglais binary digit, soit « chiffre binaire ») les chiffres de la numération binaire. Ceux ci ne peuvent prendre que deux...) composé d’un trou noir et d’une étoile, cette dernière voit son gaz (Un gaz est un ensemble d'atomes ou de molécules très faiblement liés et quasi-indépendants. Dans l’état gazeux, la matière n'a pas de forme propre ni de volume...) arraché et aspiré vers le trou noir. En s’approchant le gaz engendre un disque d’accrétion qui fournit la matière dont est composée le jet.

Les trous noirs stellaires ont une masse de quelques masses solaires. Ils naissent à la suite de l’effondrement gravitationnel du résidu des étoiles massives (environ dix masses solaires et plus, initialement). En effet, lorsque la combustion (La combustion est une réaction chimique exothermique (c’est-à-dire accompagnée d’une production d'énergie sous forme de chaleur ).) par les réactions thermonucléaires dans le cœur de l’étoile massive se termine, faute de carburant (Un carburant est un combustible qui alimente un moteur thermique. Celui-ci transforme l'énergie chimique du carburant en énergie mécanique.), une supernova se produit. Cette dernière peut laisser derrière elle un cœur qui continue à s’effondrer rapidement.

En 1939, Robert Oppenheimer a montré que si ce cœur a une masse supérieure à une certaine limite (appelée limite d’Oppenheimer-Volkoff, et égale à environ 3,3 masses solaires), la force gravitationnelle l’emporte définitivement sur toutes les autres forces et un trou noir se forme.

L’effondrement vers un trou noir est susceptible d’émettre des ondes gravitationnelles, qui devraient être détectées dans un futur proche avec des instruments tels que le détecteur (Un détecteur est un dispositif technique (instrument, substance, matière) qui change d'état en présence de l'élément ou de la situation pour...) Virgo de Cascina en Italie, ou avec les deux interféromètres américains de LIGO. Les trous noirs stellaires sont aujourd’hui observés dans les binaires X et les microquasars et sont responsables parfois de l’apparition de jets tels que ceux observés dans certains noyaux actifs de galaxies.

Trous noirs supermassifs

Le jet émis depuis le centre de la galaxie M87 est probablement formé grâce à la présence d’un trou noir supermassif dont la masse est estimée à trois milliards de masses solaires. Seul un côté du jet est visible, il s'agit de celui dirigé vers nous. Celui-ci apparaît bien plus brillant que le contre jet, car ayant sa luminosité considérablement augmentée par l'effet de décalage vers le bleu, alors que le contre jet subit un décalage vers le rouge qui le rend bien moins lumineux.
Le jet émis depuis le centre de la galaxie (Galaxies est une revue française trimestrielle consacrée à la science-fiction. Avec ce titre elle a connu deux existences, prenant par ailleurs la suite de deux autres Galaxie, cette fois au...) M87 est probablement formé grâce à la présence d’un trou noir supermassif dont la masse est estimée à trois milliards de masses solaires. Seul un côté du jet est visible, il s'agit de celui dirigé vers nous. Celui-ci apparaît bien plus brillant que le contre jet, car ayant sa luminosité considérablement augmentée par l'effet de décalage vers le bleu, alors que le contre jet subit un décalage vers le rouge qui le rend bien moins lumineux.

Les trous noirs supermassifs ont une masse comprise entre quelques millions et quelques milliards de masses solaires. Ils se trouvent au centre des galaxies et leur présence provoque parfois l’apparition de jets et du rayonnement X. Les noyaux de galaxies qui sont ainsi plus lumineux qu’une simple superposition (En mécanique quantique, le principe de superposition stipule qu'un même état quantique peut possèder plusieurs valeurs pour une certaine quantité observable (spin, position, quantité de...) d’étoiles sont alors appelés noyaux actifs de galaxies.

Notre galaxie (Une galaxie est, en cosmologie, un assemblage d'étoiles, de gaz, de poussières et de matière noire et contenant parfois un trou noir supermassif en son centre.), la Voie lactée, contient un tel trou noir, ainsi qu’il a été démontré par l’observation (L’observation est l’action de suivi attentif des phénomènes, sans volonté de les modifier, à l’aide de moyens d’enquête et d’étude appropriés. Le plaisir procuré explique la très grande...) des mouvements extrêmement rapides des étoiles proches du trou noir[18]. En particulier, une étoile nommée S2 a pu être observée lors d’une révolution complète autour (Autour est le nom que la nomenclature aviaire en langue française (mise à jour) donne à 31 espèces d'oiseaux qui, soit appartiennent au genre Accipiter, soit constituent...) d’un objet sombre non détecté en moins de onze ans. L’orbite (En mécanique céleste, une orbite est la trajectoire que dessine dans l'espace un corps autour d'un autre corps sous l'effet de la gravitation.) elliptique de cette étoile l’a amenée à moins de vingt unités astronomiques de cet objet (soit une distance de l’ordre de celle Uranus-Soleil), et la vitesse à laquelle l’orbite est parcourue permet d’assigner une masse d’environ 2,3 millions de masses solaires pour l’objet sombre autour duquel elle gravite. Aucun modèle autre que celui d’un trou noir ne permet de rendre compte d’une telle concentration de matière dans un volume aussi restreint[19].

Le télescope (Un télescope, (du grec tele signifiant « loin » et skopein signifiant « regarder, voir »), est un instrument d'optique permettant d'augmenter la luminosité ainsi que...) Chandra (Le satellite Chandra est un télescope à rayons X. Il a été lancé en 1999 par la navette spatiale Columbia lors de la mission STS-93.) a également permis d’observer au centre de la galaxie NGC 6240 deux trous noirs supermassifs en orbite l’un autour de l’autre. La formation de tels géants est encore débattue, mais certains pensent qu’ils se sont formés très rapidement au début de l’univers[20],[21].

Trous noirs intermédiaires

Les trous noirs intermédiaires sont des objets récemment découverts et ont une masse entre 100 et 10 000 masses solaires[22]. Dans les années 1970, les trous noirs de masse intermédiaire étaient supposés se former dans le cœur des amas globulaires, mais aucune observation ne venait soutenir cette hypothèse. Des observations dans les années 2000 ont montré l’existence de sources de rayons X ultralumineuses (Ultra-luminous X-ray source en anglais, ou ULX)[23]. Ces sources ne sont apparemment pas associées au cœur des galaxies où l’on trouve les trous noirs supermassifs. De plus, la quantité de rayons X observée est trop importante pour être produite par un trou noir de 20 masses solaires, accrétant de la matière avec un taux égal à la limite d’Eddington (limite maximale pour un trou noir stellaire).

Trous noirs primordiaux

Les trous noirs primordiaux, aussi appelés micro trous noirs ou trous noirs quantiques, auraient une taille très petite. Ils se seraient formés durant le Big Bang (d’où l’appellation trou noir " primordial "), suite à l’effondrement gravitationnel de petites surdensités dans l’univers primordial. Dans les années 1970, les physiciens Stephen Hawking (Stephen W. Hawking, CH, CBE, FRS, FRSA, est un physicien théoricien et cosmologiste anglais, né le 8 janvier 1942 à Oxford. Hawking a été professeur de...) et Bernard Carr ont étudié un mécanisme de formation des trous noirs dans l’univers primordial. Ils avancèrent l’idée d’une profusion de mini (MINI est une marque automobile de BMW Group. L'ancien modèle Mini était construit par MG Rover.) trous noirs, minuscules par rapport à ceux envisagés par la formation stellaire. La densité (La densité ou densité relative d'un corps est le rapport de sa masse volumique à la masse volumique d'un corps pris comme référence. Le corps de...) et la répartition en masse de ces trous noirs n’est pas connue et dépend essentiellement de la façon dont se produit une phase (Le mot phase peut avoir plusieurs significations, il employé dans plusieurs domaines et principalement en physique :) d’expansion rapide dans l’univers primordial, l’inflation cosmique (L'inflation cosmique est un modèle cosmologique s'insérant dans le paradigme du Big Bang lors duquel une région de l'univers comprenant l'univers observable a connu une phase d'expansion très violente...). Ces trous noirs, de faible masse émettent s’ils existent un rayonnement gamma qui pourrait éventuellement être détecté par des satellites comme INTEGRAL. La non détection de ce rayonnement permet de mettre des limites supérieures sur l’abondance et la répartition en masse de ces trous noirs.

Selon certains modèles de physique des hautes énergies, il pourrait être possible de créer des mini trous noirs similaires en laboratoire[24], dans des accélérateurs de particules comme le LHC, installé près de Genève, en Suisse.

Observation des trous noirs

Jet de plasma observé en interférométrie dans la galaxie M87. L’effet est imputé au champ magnétique intense à proximité du trou noir supermassif en rotation situé au centre de la galaxie.
Jet de plasma ( En physique, le plasma décrit un état de la matière constitué de particules chargées (d'ions et d'électrons). Le plasma quark-gluon est un plasma qui constituerait les grandes étoiles à neutrons avant qu'elles...) observé en interférométrie (L'interférométrie est une méthode de mesure qui exploite les interférences intervenant entre plusieurs ondes cohérentes entre elles.) dans la galaxie M87. L’effet est imputé au champ magnétique (En physique, le champ magnétique (ou induction magnétique, ou densité de flux magnétique) est une grandeur caractérisée par la donnée d'une intensité et d'une direction, définie en...) intense à proximité du trou noir supermassif en rotation situé au centre de la galaxie.

Les deux seules classes de trous noirs pour lesquelles on dispose d’observations nombreuses (indirectes, mais de plus en plus précises, voir paragraphe suivant) sont les trous noirs stellaires et supermassifs. Le trou noir supermassif le plus proche est celui qui se trouve au centre de notre galaxie à environ 8 kilo-parsecs.

Une des premières méthodes de détection d’un trou noir est la détermination de la masse des deux composantes d’une étoile binaire, à partir des paramètres orbitaux. On a ainsi observé des étoiles de faible masse avec un mouvement orbital très prononcé (amplitude de plusieurs dizaines de km/s), mais dont le compagnon (Le Compagnon (titre original : Alvin Journeyman) est un roman de fantasy publié en 1995 par Orson Scott Card (États-Unis).) est invisible. Le compagnon massif invisible peut généralement être interprété comme une étoile à neutrons ou un trou noir puisqu’une étoile normale avec une telle masse se verrait très facilement. La masse du compagnon (ou la fonction de masses, si l’angle (En géométrie, la notion générale d'angle se décline en plusieurs concepts apparentés.) d’inclinaison (En mécanique céleste, l'inclinaison est un élément orbital d'un corps en orbite autour d'un autre. Il décrit l'angle entre le plan de l'orbite et le plan de référence (généralement le plan de l'écliptique,...) est inconnu) est alors comparée à la masse limite maximale des étoiles à neutrons (environ 3,3 masses solaires). Si elle dépasse cette limite, on considère que l’objet est un trou noir. Sinon, il peut être une naine blanche.

On considère également que certains trous noirs stellaires apparaissent lors des sursauts de rayons gamma (ou GRB, pour gamma-ray burst en anglais). En effet, ces derniers se formeraient via l’explosion (Une explosion est la transformation rapide d'une matière en une autre matière ayant un volume plus grand, généralement sous forme de gaz. Plus cette transformation...) d’une étoile massive (comme une étoile Wolf-Rayet) en supernova, et que dans certains cas (décrits par le modèle collapsar), un flash de rayons gamma est produit au moment où le trou noir se forme. Ainsi, un GRB[25] pourrait représenter le signal ( Termes généraux Un signal est un message simplifié et généralement codé. Il existe sous forme d'objets ayant des formes particulières. Les signaux lumineux sont...) de la naissance d’un trou noir. Des trous noirs de plus faible masse peuvent aussi être formés par des supernovae classiques. Le rémanent de la supernova 1987A est soupçonné d’être un trou noir, par exemple.

Un deuxième phénomène directement relié à la présence d’un trou noir, cette fois pas seulement de type stellaire, mais aussi supermassif, est la présence de jets observés principalement dans le domaine des ondes radio. Ces jets résultent des changements de champ magnétique à grande échelle (La grande échelle, aussi appelée échelle aérienne ou auto échelle, est un véhicule utilisé par les sapeurs-pompiers, et qui emporte une échelle escamotable de...) se produisant dans le disque d’accrétion du trou noir.

Vers l’observation directe ?

La petitesse d’un trou noir stellaire (quelques kilomètres) rend son observation directe impossible. En guise d’exemple, et même si la taille angulaire d'un trou noir est plus grande que celle d’un objet classique, un trou noir d’une masse solaire (En astrophysique, la masse solaire est l'unité de masse conventionnellement utilisée pour les étoiles ou les autres objets massifs. Elle est égale à la masse...) et situé à un parsec (Le parsec (symbole pc) est une unité de longueur utilisée en astronomie. Son nom vient de la contraction de « parallaxe-seconde ».) (environ 3,26 années-lumière) aurait un diamètre (Dans un cercle ou une sphère, le diamètre est un segment de droite passant par le centre et limité par les points du cercle ou de la sphère.) angulaire de 0,1 micro seconde d'arc. Cependant, la situation est plus favorable pour un trou noir supermassif. En effet, la taille d’un trou noir est proportionnelle à sa masse. Le trou noir du centre galactique a une masse, bien estimée, d’environ 2,6 millions de masses solaires. Son rayon de Schwarzschild (Le rayon de Schwarzschild est défini comme le rayon critique prévu par la géométrie de Schwarzschild, en deçà duquel rien ne peut s'échapper : si une étoile...) est donc d’environ 7 millions de kilomètres. La taille angulaire de ce trou noir, situé à environ 8,5 kiloparsecs est de l’ordre de 30 microsecondes d’arc. Cette résolution est inaccessible dans le domaine visible, mais est assez proche des limites actuellement atteignables en interférométrie radio. La technique de l’interférométrie radio, avec une sensibilité suffisante, est limitée en fréquence au domaine millimétrique. Un gain d’un ordre de grandeur en fréquence permettrait une résolution meilleure que la taille angulaire du trou noir. L’imagerie (L’imagerie consiste d'abord en la fabrication et le commerce des images physiques qui représentent des êtres ou des choses. La fabrication se faisait jadis soit à la main,...) directe du trou noir du centre galactique est donc envisageable dans les années qui viennent. Le trou noir supermassif situé au centre de la galaxie M87 est environ 2000 fois plus éloigné (18,7 Mpc), mais estimé près de 1300 fois plus massif. Ce trou noir pourrait ainsi devenir le second trou noir imagé après celui de la Voie Lactée[26],[27].

Exemples de trous noirs stellaires

Cygnus X-1, détecté en 1965, est le premier objet astrophysique connu contenant un trou noir. C’est un système binaire constitué d’un trou noir en rotation et d’une étoile géante (Une étoile géante est une étoile de classe de luminosité II ou III. Dans le diagramme de Hertzsprung-Russell, les géantes forment deux branches au-dessus de la séquence principale. Elles se situent entre les...).

Les systèmes binaires stellaires qui contiennent un trou noir avec un disque d’accrétion formant (Dans l'intonation, les changements de fréquence fondamentale sont perçus comme des variations de hauteur : plus la fréquence est élevée, plus la hauteur perçue est haute et inversement....) des jets sont appelés microquasars, en référence à leurs parents extragalactiques : les quasars. Les deux classes d’objets partagent en fait les mêmes processus physiques. Parmi les microquasars les plus étudiés, on notera GRS 1915+105, découvert en 1994 pour avoir des jets supraluminiques. Un autre cas de tels jets fut détecté dans le système GRO J1655-40. Mais sa distance est sujette à controverse et ses jets pourraient ne pas être supraluminiques. Notons aussi le microquasar (En astronomie, un microquasar est une étoile binaire contenant un objet compact tel qu'une étoile à neutrons ou un trou noir, et qui produit des jets d'une vitesse proche de la vitesse de la lumière.) très spécial SS 433, qui a des jets persistants en précession (La précession est le nom donné au changement graduel d'orientation de l'axe de rotation d'un objet ou, de façon plus générale, d'un vecteur sous l'action de...), et où la matière se déplace par paquets à des vitesses de quelques fractions de la vitesse de la lumière.

Exemples de trous noirs supermassifs

Les candidats trous noirs supermassifs ont premièrement été les noyaux actifs de galaxie et les quasars découverts par les radioastronomes dans les années 1960. Cependant, les observations les plus convaincantes de l’existence de trous noirs supermassifs sont celles des orbites des étoiles autour du centre galactique appelé Sagitarius A*. L’orbite de ces étoiles et les vitesses atteintes, ont permis aujourd’hui d’exclure tout autre type d’objet qu’un trou noir supermassif à cet endroit de la galaxie. Par la suite, des trous noirs supermassifs ont été détectés dans de nombreuses autres galaxies.

En février 2005, une étoile géante bleue, appelée SDSS J090745.0+24507 fut observée quittant notre galaxie avec une vitesse deux fois supérieure à la vitesse de libération de la Voie Lactée, soit 0,0022 fois la vitesse de la lumière. Quand on remonte la trajectoire (La trajectoire est la ligne décrite par n'importe quel point d'un objet en mouvement, et notamment par son centre de gravité.) de cette étoile, on voit qu’elle croise le voisinage immédiat du centre galactique. Sa vitesse et sa trajectoire confortent donc également l’idée de la présence d’un trou noir supermassif à cet endroit dont l’influence gravitationnelle aurait provoqué l’éjection de cette étoile de la Voie Lactée.

En novembre 2004, une équipe d’astronomes a rapporté la découverte du premier trou noir de masse intermédiaire dans notre galaxie et orbitant à seulement trois années-lumière du centre galactique. Ce trou noir aurait une masse d’environ 1300 masses solaires et se trouve dans un amas de seulement sept étoiles. Cet amas est probablement le résidu d’un amas massif d’étoiles qui a été dénudé par la présence du trou noir central[28]. Cette observation conforte l’idée que les trous noirs supermassifs grandissent en absorbant des étoiles et autres trous noirs, qui pourra être confirmée par l’observation directe des ondes gravitationnelles émises par ce processus, par l’intermédiaire de l’interféromètre spatial LISA.

En juin 2004, des astronomes ont trouvé un trou noir supermassif, appelé Q0906+6930, au centre d’une galaxie lointaine d’environ 12,7 milliards d’années-lumière, c’est-à-dire lorsque l’univers était encore très jeune[29]. Cette observation montre que la formation des trous noirs supermassifs dans les galaxies est un phénomène relativement rapide.

Trous noirs et physique fondamentale (En musique, le mot fondamentale peut renvoyer à plusieurs sens.)

Théorèmes sur les singularités

Une question cruciale à propos des trous noirs est de savoir sous quelles conditions ils peuvent se former. Si les conditions nécessaires à leur formation sont extrêmement spécifiques, les chances que les trous noirs soient nombreux peuvent être faibles. Un ensemble (En théorie des ensembles, un ensemble désigne intuitivement une collection d’objets (les éléments de l'ensemble), « une multitude qui peut être comprise comme un...) de théorèmes mathématiques (Les mathématiques constituent un domaine de connaissances abstraites construites à l'aide de raisonnements logiques sur des concepts tels que les...) dus à Stephen Hawking et Roger Penrose a montré qu’il n’en était rien : la formation des trous noirs peut se produire dans une variété de conditions extrêmement génériques. Pour des raisons évidentes, ces travaux ont été nommés théorèmes sur les singularités. Ces théorèmes datent du début des années 1970, époque où il n’y avait guère de confirmation observationnelle de l’existence des trous noirs. Les observations ultérieures ont effectivement confirmé que les trous noirs étaient des objets très fréquents dans l’univers.

Singularités nues et censure cosmique

Au centre d’un trou noir se situe une singularité gravitationnelle. Pour tout type de trou noir, cette singularité est " cachée " du monde (Le mot monde peut désigner :) extérieur par l’horizon des événements. Cette situation s’avère très heureuse : la physique actuelle ne sait certes pas décrire une singularité gravitationnelle, mais cela a peu d’importance car, celle-là étant à l'intérieur de la zone délimitée par l’horizon, elle n’influe pas sur les événements du monde extérieur. Il se trouve cependant qu’il existe des solutions mathématiques aux équations de la relativité générale dans lesquelles une singularité existe sans être entourée d’un horizon. C’est par exemple le cas pour les solutions de Kerr ou de Reissner-Nordström quand la charge ou le moment cinétique dépasse une certaine valeur critique. Dans ce cas, on ne parle plus de trou noir (il n’y a plus d’horizon, donc plus de " trou ") mais de singularité nue. De telles configurations sont extrêmement difficiles à étudier en pratique, car la prédiction du comportement de la singularité reste toujours impossible ; mais cette fois, il influence l’univers dans lequel nous vivons. L’existence de singularités nues a donc pour conséquence l’impossibilité d’une évolution déterministe de l’univers dans l’état des connaissances actuelles[30].

Ces éléments, ainsi que des considérations plus fondamentales, ont conduit le mathématicien anglais Roger Penrose à formuler en 1969 l’hypothèse dite de la censure cosmique, stipulant qu’aucun processus physique ne pouvait permettre l’apparition de singularités nues dans l’univers. Cette hypothèse, qui possède plusieurs formulations possibles, a été l’objet d’un pari entre Stephen Hawking d’une part et Kip Thorne et John Preskill d’autre part, ces derniers ayant parié que des singularités nues pouvaient exister. En 1991, Stuart L. Shapiro et Saul A. Teukolsky montrèrent sur foi de simulations numériques que des singularités nues pouvaient se former dans l’univers. Quelques années plus tard, Matthew Choptuik mit en évidence un ensemble important de situations à partir desquelles la formation de singularités nues était possible. Ces configurations demeurent cependant extrêmement particulières, et nécessitent un ajustement fin des conditions initiales pour mener à la formation des singularités nues. Leur formation est donc possible, mais en pratique extrêmement improbable. En 1997 Stephen Hawking reconnut qu’il avait perdu son pari avec Kip Thorne et John Preskill. Un autre pari a depuis été lancé, où des conditions plus restrictives sur les conditions initiales pouvant mener à des singularités nues ont été rajoutées.

Entropie (En thermodynamique, l'entropie est une fonction d'état introduite au milieu du XIXe siècle par Rudolf Clausius dans le cadre du second principe, d'après les travaux de Carnot[1]. Clausius a montré que le rapport Q/T (où Q est la...) des trous noirs

En 1971, le physicien britannique Stephen Hawking montra que la surface totale des horizons des événements de n’importe quel trou noir classique ne peut jamais décroître. Cette propriété est tout à fait semblable à la deuxième loi de la thermodynamique (On peut définir la thermodynamique de deux façons simples : la science de la chaleur et des machines thermiques ou la science des grands systèmes en équilibre. La première définition est aussi la première dans l'histoire....), avec la surface jouant le rôle de l’entropie. Dans le cadre de la physique classique, on pourrait violer cette loi de la thermodynamique en envoyant de la matière dans un trou noir, ce qui la ferait disparaître de notre univers, avec la conséquence d’un décroissement de l’entropie totale de l’univers.

Pour éviter de violer cette loi, le physicien Jacob Bekenstein proposa qu’un trou noir possède une entropie (sans en préciser la nature exacte), et qu’elle soit proportionnelle à la surface de son horizon. Bekenstein pensait alors que les trous noirs n’émettent pas de radiation (Le rayonnement est un transfert d'énergie sous forme d'ondes ou de particules, qui peut se produire par rayonnement électromagnétique (par exemple : infrarouge) ou par une désintégration (par exemple : radioactivité α). Par...) et que le lien avec la thermodynamique n’était qu’une simple analogie et pas une description physique des propriétés du trou noir. Néanmoins Hawking a peu après démontré par un calcul de théorie quantique des champs (La théorie quantique des champs est l'application des concepts de la physique quantique aux champs. Issue de la mécanique quantique relativiste, dont l'interprétation comme...) que le résultat sur l’entropie des trous noirs est bien plus qu’une simple analogie et qu’il est possible de définir rigoureusement une température (La température est une grandeur physique mesurée à l'aide d'un thermomètre et étudiée en thermométrie. Dans la vie courante, elle est reliée aux sensations...) associée au rayonnement des trous noirs (voir ci-dessous).

Utilisant les équations de la thermodynamique des trous noirs, il apparaît que l’entropie d’un trou noir est proportionnelle à la surface de son horizon[31]. C’est un résultat universel qui peut être appliqué dans un autre contexte (Le contexte d'un évènement inclut les circonstances et conditions qui l'entourent; le contexte d'un mot, d'une phrase ou d'un texte inclut les mots qui l'entourent. Le concept de contexte issu traditionnellement de...) aux modèles cosmologiques comportant eux aussi un horizon comme par exemple l’univers de de Sitter. L’interprétation microscopique de cette entropie reste par contre un problème ouvert, auquel la théorie des cordes (La théorie des cordes est l'une des voies envisagées pour régler une des questions majeures de la physique théorique : fournir une description de la gravité quantique c'est-à-dire l'unification de la...) a cependant réussi à apporter des éléments de réponse partiels.

Il a été ensuite montré que les trous noirs sont des objets à entropie maximale, c’est-à-dire que l’entropie maximale d’une région de l’espace délimitée par une surface donnée (Dans les technologies de l'information, une donnée est une description élémentaire, souvent codée, d'une chose, d'une transaction, d'un...) est égale à celle du trou noir de même surface[32],[33]. Ce constat a amené les physiciens Gerard ’t Hooft et ensuite Leonard Susskind à proposer un ensemble d’idées, appelé principe holographique, basé sur le fait que la description de la surface d’une région permet de reconstituer toute l’information relative à son contenu, de la même façon qu’un hologramme (L'hologramme est le produit de l'holographie. Il s'agit historiquement d'un procédé de photographie en relief. Aujourd'hui, un hologramme représente une image en trois dimensions apparaissant comme...) code des informations relatives à un volume sur une simple surface, permettant ainsi de donner un effet de relief (Le relief est la différence de hauteur entre deux points. Néanmoins, ce mot est souvent employé pour caractériser la forme de la surface de la Terre.) à partir d’une surface.

La découverte de l’entropie des trous noirs a ainsi permis le développement d’une analogie extrêmement profonde entre trous noirs et thermodynamique, la thermodynamique des trous noirs, qui pourrait aider dans la compréhension d’une théorie de la gravité quantique (La gravité quantique est la branche de la physique théorique tentant d'unifier la mécanique quantique et la relativité générale.).

Évaporation (L'évaporation est un passage progressif de l'état liquide à l'état gazeux. Elle est différente de l'ébullition qui est une transition rapide. C'est un changement d'état appelé vaporisation.) et radiation de Hawking

En 1974, Stephen Hawking appliqua la théorie quantique des champs à l’espace-temps courbé de la relativité générale, et découvrit que contrairement à ce que prédisait la mécanique (Dans le langage courant, la mécanique est le domaine des machines, moteurs, véhicules, organes (engrenages, poulies, courroies, vilebrequins, arbres de...) classique, les trous noirs pouvaient effectivement émettre une radiation (proche d’une radiation thermique) aujourd’hui appelée rayonnement de Hawking[34] : les trous noirs ne sont donc pas complètement " noirs ".

La radiation de Hawking correspond en fait à un spectre de corps noir (En physique, un corps noir désigne un objet idéal dont le spectre électromagnétique ne dépend que de sa température. En pratique, un tel objet matériel n'existe pas, mais il représente un cas...). On peut donc y associer la " température " du trou noir, qui est inversement proportionnelle à sa taille[35]. De ce fait, plus le trou noir est important, plus sa température est basse. Un trou noir de la masse de la planète Mercure aurait une température égale à celle du rayonnement de fond diffus cosmologique (Le fond diffus cosmologique est un rayonnement électromagnétique provenant de l'Univers, et qui frappe la Terre de façon quasi uniforme dans toutes les directions.) (à peu près 2,73 kelvins). Si le trou est plus massif, il sera donc plus froid que la température du fond et accroîtra son énergie plus vite qu’il n’en perdra via la radiation de Hawking, devenant ainsi encore plus froid. Un trou noir stellaire a ainsi une température de quelques microkelvins, ce qui rend la détection directe de son évaporation totalement inenvisageable. Cependant, pour des trous noirs moins massifs, la température est plus élevée, et la perte d’énergie associée lui permet de voir sa masse varier sur des échelles cosmologiques. Ainsi, un trou noir de quelques millions de tonnes s’évaporera-t-il en une durée inférieure à celle de l’âge de l'univers. Alors que le trou noir s’évapore, le trou noir devient plus petit, donc plus chaud. Certains astrophysiciens ont proposé que l’évaporation complète de trous noirs produirait un flash de rayons gamma. Ceci serait une signature de l’existence de trous noirs de très faible masse. Il s’agirait alors de trous noirs primordiaux. La recherche (La recherche scientifique désigne en premier lieu l’ensemble des actions entreprises en vue de produire et de développer les connaissances scientifiques. Par extension métonymique, la recherche scientifique...) actuelle explore cette possibilité avec les données du satellite européen INTEGRAL[36].

Paradoxe (Un paradoxe est une proposition qui contient ou semble contenir une contradiction logique, ou un raisonnement qui, bien que sans faille apparente, aboutit à une absurdité, ou encore,...) de l’information

Une question de physique fondamentale encore irrésolue au début du XXIe siècle est le fameux paradoxe de l’information. En effet, en raison du théorème de calvitie déjà cité (La cité (latin civitas) est un mot désignant, dans l’Antiquité avant la création des États, un groupe d’hommes sédentarisés libres (pouvant avoir des esclaves), constituant...), il n’est pas possible de déterminer a posteriori ce qui est entré dans le trou noir. Cependant, vue d’un observateur éloigné, l’information n’est jamais complètement détruite puisque la matière tombant dans le trou noir ne disparaît qu’après un temps infiniment long. Alors, l’information qui a formé le trou noir est-elle perdue ou pas ?

Des considérations générales sur ce que devrait être une théorie de la gravité quantique suggèrent qu’il ne peut y avoir qu’une quantité finie et limitée d’entropie (i.e. une quantité maximale et finie d’information) associée à l’espace près de l’horizon du trou noir. Mais la variation de l’entropie de l’horizon plus celle de la radiation Hawking est toujours suffisante pour prendre en compte toute l’entropie de la matière et de l’énergie tombant dans le trou noir… Mais restent de nombreuses questions. En particulier au niveau quantique, est-ce que l’état quantique (En mécanique quantique, l'état d'un système décrit tous les aspects du système physique. Il est représenté par un objet mathématique qui donne le maximum d'information possible sur le système, dans le but de prévoir...) de la radiation de Hawking est déterminé de manière unique par l’histoire de ce qui est tombé dans le trou noir ? De même, est-ce que l’histoire de ce qui est tombé est déterminée de manière unique par l’état quantique du trou noir et de sa radiation ? En d’autres termes, est-ce que les trous noirs sont, ou ne sont pas, déterministes ? Cette propriété est bien sûr conservée dans la relativité générale comme dans la physique classique, mais pas dans la mécanique quantique (Fille de l'ancienne théorie des quanta, la mécanique quantique constitue le pilier d'un ensemble de théories physiques qu'on regroupe sous l'appellation générale de physique quantique. Cette dénomination...).

Pendant de longues années, Stephen Hawking a maintenu sa position originelle de 1975 voulant que la radiation de Hawking soit entièrement thermique (La thermique est la science qui traite de la production d'énergie, de l'utilisation de l'énergie pour la production de chaleur ou de froid, et des transferts de chaleur suivant...), et donc complètement aléatoire, représentant ainsi une nouvelle source d’information non-déterministe. Cependant, le 21 juillet 2004, il présenta un nouvel argument, allant à l’opposé ( En mathématique, l'opposé d’un nombre est le nombre tel que, lorsqu’il est à ajouté à n donne zéro. En botanique, les organes d'une plante sont dits opposés lorsqu'ils sont...) de sa première position[37],[38],[39]. Dans ses nouveaux calculs, l’entropie associée à un trou noir serait effectivement inaccessible à un observateur extérieur. De plus dans l’absence de cette information, il est impossible de relier de manière univoque l’information de la radiation de Hawking (contenue dans ses corrélations internes) à l’état initial du système. Cependant, si le trou noir s’évapore complètement, cette identification univoque peut être faite et l’unitarité est préservée (l’information est donc conservée). Il n’est pas clair que la communauté scientifique spécialisée soit absolument convaincue par les arguments présentés par Hawking[40]. Mais Hawking lui-même fut suffisamment convaincu pour régler le pari qu’il avait fait en 1997 avec le physicien John Preskill de Caltech, provoquant ainsi un énorme intérêt des médias (On nomme média un moyen impersonnel de diffusion d'informations (comme la presse, la radio, la télévision), utilisé pour communiquer. Les médias permettent de diffuser...).

En juillet 2005, l’annonce de Hawking a donné lieu à une publication dans la revue Physical Review[41] et fut débattue par la suite au sein de la communauté scientifique sans qu’un consensus net ne se dégage quant à la validité de l’approche proposée par Hawking[42],[43].

Trous noirs et trous de ver (Les vers constituent un groupe très hétérogène d'animaux invertébrés qui partagent une caractéristique commune, à savoir un corps mou,...)

La relativité générale indique qu’il existerait des configurations dans lesquelles deux trous noirs sont reliés l’un à l’autre. Une telle configuration est habituellement appelée trou de ver ou plus rarement pont (Un pont est une construction qui permet de franchir une dépression ou un obstacle (cours d'eau, voie de communication, vallée, etc.) en passant par-dessus cette séparation. Le franchissement supporte le passage d'hommes et de...) d’Einstein-Rosen. De telles configurations ont beaucoup inspiré les auteurs de science-fiction (La science-fiction, prononcée /sjɑ̃s.fik.sjɔ̃/ (abrégé en SF), est un genre narratif (principalement littéraire et cinématographique) structuré par des...) (voir par exemple les références de la section Culture populaire) car elles proposent un moyen de voyager très rapidement sur de grandes distances, voire voyager dans le temps. En pratique, de telles configurations, si elles sont autorisées par la relativité générale, semblent totalement irréalisables dans un contexte astrophysique, car aucun processus connu ne semble permettre la formation de tels objets[44].

Culture populaire

Quand on parle de " culture populaire " à propos de trou noir, on pense souvent à science-fiction. On y trouve, au cinéma (On nomme cinéma une projection visuelle en mouvement, le plus souvent sonorisée. Le terme désigne indifféremment aujourd'hui une salle de projection ou l'art en lui-même.) ou dans le domaine littéraire, beaucoup d’inspiration.

  • Dans les films
    • (en) The Black Hole (1979), de Gary Nelson, est un film des studios Disney.
    • (en) Event horizon (1997), de Paul W.S. Anderson.
    • (en) Sphere (1998), de Barry Levinson.
    • (en) The Void (2002), de Gilbert M. Shilton.
    • Dans la mythologie de La Guerre des étoiles, Evona, l’un des deux soleils du système dont est originaire le peuple (Le terme peuple adopte des sens différents selon le point de vue où l'on se place.) des Hutt a été englouti par un trou noir.
  • Dans la littérature
    • Les Cantos d'Hypérion, de Dan Simmons.
    • Contact, de Carl Sagan, adapté au cinéma (voir Contact).
    • La Grande Porte, de Frederik Pohl.
    • Une singularité nue et ses effets non déterministes sont à la base du livre Radix, de l’auteur états-unien Alfred Angelo Attanasio, paru en 1981.
    • Dans les romans Ilium et Olympos de Dan Simmons des trous de ver entre trous noirs branaires (brane holes) sont utilisés comme moyen de transport (Le transport est le fait de porter quelque chose, ou quelqu'un, d'un lieu à un autre, le plus souvent en utilisant des véhicules et des voies de communications (la route, le canal ..). Par assimilation, des...) par les Moravecs pour se déplacer à travers le système solaire.
    • Le roman de l’auteur américain John Varley, Le Canal Ophite parle de " chasseurs de trous noirs ".
    • Le Festin des dieux (1991) par l’écrivain Éric Jacob.
    • L’essai Eureka écrit en 1848 par Edgar Allan Poe qui inclut une intuition cosmologique qui anticipe les trous noirs et la théorie du Big Bang.
  • Dans les séries télévisées
    • Andromeda, le protagoniste et son vaisseau (Andromeda) sont happés par un trou noir et y sont prisonniers dans le temps pendant 300 ans.
    • Babylon (Babylon est un logiciel propriétaire de traduction multilangues, disposant de plus de 25 dictionnaires linguistiques « officiels » et d'une multitude d'autres crées par des particuliers. Babylon dispose d'un système de...) 5, le voyage (Un voyage est un déplacement effectué vers un point plus ou moins éloigné dans un but personnel (tourisme) ou professionnel (affaires). Le voyage s'est considérablement développé et démocratisé, au cours du...) spatial est rendu (Le rendu est un processus informatique calculant l'image 2D (équivalent d'une photographie) d'une scène créée dans un logiciel de modélisation 3D...) possible par des zones de singularité créées artificiellement.
    • Stargate SG-1, dans l’épisode 16 de la saison (La saison est une période de l'année qui observe une relative constance du climat et de la température. D'une durée d'environ trois mois (voir le tableau Solstice et Équinoxe ci-dessous), la saison...) 2, SG-10 en mission sur P3W-451 est confronté à l’apparition d’un trou noir.
    • Stargate SG-1, dans l’épisode 6 de la saison 9, une planète s’effondre en un trou noir par la volonté des Ori, afin d’activer une porte des étoiles géante.
    • Stargate SG-1, les vaisseaux inter-planetaires se déplacent rapidement grâce à un saut dans l'hyperespace. Celui-ci est relié à la théorie des trous noirs (voir graphique sur les trous de ver).
  • En musique
    • La chanson Cygnus X-1 de l’album A Farewell to Kings (1977) par le groupe Rush
    • La chanson Black Holes de l’album Great White North (1981) par Bob & Doug MacKenzie
    • La chanson " Supermassive Black hole " de l'album " Black Holes and Revelations " (2006) par le groupe Muse
    • La chanson " Black Hole Sun " de l'album " Superunknown " (1994) par le groupe Soundgarden
  • En bande dessinée
    • Le comics Warheads (édité par Marvel UK) décrit les aventures de mercenaires se servant de trous noirs pour se déplacer à travers l’espace.
  • Dans le domaine du jeu vidéo (La vidéo regroupe l'ensemble des techniques, technologie, permettant l'enregistrement ainsi que la restitution d'images animées, accompagnées ou non de son, sur un support adapté à l'électronique et non de type photochimique. Le mot vidéo vient du...)
    • Outcast où la Terre est menacé d’être engloutie par un trou noir, après un accident.
    • Star Fox ou l'Arwing peut voyager d'une partie de l'espace à une autre grâce à un trou noir

Notes et références

  1. On parle ici de trou noir de Schwarzschild.
  2. Schwarzschild, K. (1916). Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie. Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften 1, 189-196.
  3. Parmi les premières observations de Cygnus X-1 par Uhuru, on retiendra : Oda et al., X-Ray Pulsations from Cygnus X-1 Observed from UHURU, (1971) ApJ, 166, 1
  4. Les premières indications que Cygnus X-1 est un trou noir, à partir des observations de Uhuru, sont publiées par : Eardley, D. M. et Press, W. H. Astrophysical processes near black holes, (1976) ARAA, 13, 381.
  5. Voir l’ouvrage de Kip S. Thorne, Trous noirs et distorsions du temps cité en Bibliographie.
  6. ab La relativité générale est une théorie relativiste de la gravitation, mais qui ne peut prendre en compte les effets de mécanique quantique. Or une singularité gravitationnelle est une région dans laquelle ces effets quantiques jouent un rôle prépondérant.
  7. Le satellite Gravity Probe B, lancé en 2004, a notamment pour mission de mettre en évidence cet effet.
  8. Voir par exemple le livre de Robert M. Wald cité en bibliographie.
  9. Par exemple, l’entropie des trous noirs n’a à l’heure actuelle d’interprétation microscopique que pour certains types de trous noirs dans des espace-temps à cinq dimensions.
  10. (en) Rev. J. Michell, B. D. F. R. S. In a Letter to Henry Cavendish, Esq. F. R. S. and A. S. On the Means of Discovering the Distance, Magnitude, &c. of the Fixed Stars, in Consequence of the Diminution of the Velocity of Their Light, in Case Such a Diminution Should be Found to Take Place in any of Them, and Such Other Data Should be Procured from Observations, as Would be Farther Necessary for That Purpose., " Philosophical Transactions of the Royal Society of London ", vol. 74 (1784) pp.35-57 (url link) (ISSN 0261-0523) Voir aussi Historique des trous noirs (Cet article traite de la partie historique relative à la découverte et la compréhension des trous noirs.).
  11. Il est donc faux de dire, comme on le voit souvent, que le mouvement de l’objet tombant sur le trou noir se " gèle ", ou s’arrête. En pratique il est devenu invisible avant de s’arrêter complètement.
  12. Voir Force de marée#Le cas des trous noirs pour les détails.
  13. Contrairement à une idée reçue répandue. Cependant, si l'interaction forte était moins intense, alors la pression de dégénérescence des nucléons pourrait éventuellement assurer l'équilibre de l'étoile. On pourra consulter avec profit (lien) pour plus de détails.
  14. Une naine blache est principalement composée d'hélium (L'hélium est un gaz noble ou gaz rare, pratiquement inerte. De numéro atomique 2, il ouvre la série des gaz nobles dans le tableau périodique des éléments. Son point...) de carbone (Le carbone est un élément chimique de la famille des cristallogènes, de symbole C, de numéro atomique 6 et de masse atomique 12,0107.) et d'oxygène (L’oxygène est un élément chimique de la famille des chalcogènes, de symbole O et de numéro atomique 8.), qui peuvent effectivement fusioner en des éléments plus lourds.
  15. Selon la masse de l'étoile progénitrice, son cœur va s'effondrer en étoile à neutrons (masse de l'étoile plus faible), soit en trou noir (masse plus élevée).
  16. (en) Charles Alcock, Edward Fahri & Angela Olinto, Strange stars, Astrophysical Journal, 310, 261-272 (1986) Résumé disponible sur ADS: 1986ApJ...310..261A.
  17. Voir par exemple (en) Jeremy J. Drake et al., Is RX J185635-375 a Quark Star?, Astrophysical Journal, 572, 996-1001 (2002), Article disponible sur arXiv: astro-ph/0204159. (en).
  18. (en) Star Orbiting Massive Milky Way Centre Approaches to within 17 Light-Hours (communiqué de presse ESO, 16 octobre 2002)
  19. Voir le site Galactic Center Research at MPE du Max-Planck-Institut für extraterrestrische Physik et en particulier l’animation (L'animation consiste à donner l'illusion du mouvement à l'aide d'une suite d'images. Ces images peuvent être dessinées, peintes, photographiées, numériques, etc.) montrant la trajectoire de l’étoile S2. Voir également R. Schödel et al., Closest Star Seen Orbiting the Supermassive Black Hole at the Centre of the Milky Way, Nature (journal), 419, 694 (17 octobre 2002), Article disponible sur arXiv: astro-ph/0210426. (en)
  20. (en) Volonteri M., Rees M. J., Rapid Growth of High-Redshift Black Holes, (2005), ApJ, 633, 624 Article disponible sur arXiv: astro-ph/0506040. (en)
  21. (en) Voir aussi l'article sur le site de Universe Today.
  22. (en) Voir la revue de M.C. Miller et E.J.M. Colbert. Article disponible sur arXiv: astro-ph/0308402. (en)
  23. (en) J. R. Sánchez Sutil, A catalogue of ultra-luminous X-ray source coincidences with FIRST radio sources], Astronomy and Astrophysics, vol. 452, t. 2, juin 2006, pp. 739-742. Résumé disponible sur ADS: 2006A%26A...452..739S
  24. (en) Voir l’article du Scientific American Magazine (no  de mai 2005), intitulé Quantum Black Holes.
  25. On parle ici principalement de GRB " longs ", formés par les étoiles massives. La deuxième classe de GRB, les " courts ", sont considérés comme le résultat de la fusion (En physique et en métallurgie, la fusion est le passage d'un corps de l'état solide vers l'état liquide. Pour un corps pur, c’est-à-dire pour une substance constituée de molécules toutes identiques,...) de deux étoiles à neutrons, ce qui donne lui aussi un trou noir… Mais leur compréhension est plus difficile que les GRB longs. Car le phénomène de coalescence de deux objets très compacts nécessite l’utilisation de simulations numériques extrêmement complexe. Comparativement, l’explosion d’une étoile massive est plus simple.
  26. (en) T. P. Krichbaum et al., Towards the Event Horizon - The Vicinity of AGN at Micro-Arcsecond Resolution, comptes rendus du 7e symposium européen sur les réseaux VLBI (Tolède, Espagne, 12-15 octobre 2004). Article disponible sur arXiv: astro-ph/0411487. (en).
  27. (en) M. Miyoshi et al., An approach Detecting the Event Horizon of SGR A*, ibid.. Article disponible sur arXiv: astro-ph/0412289. (en)
  28. (en) Voir J.-P. Maillard et al., The nature of the Galactic Center source IRS 13 revealed by high spatial resolution in the infrared, Astronomy and Astrophysics, 423, 155-167, 2004, Article disponible sur arXiv: astro-ph/0404450. (en)
  29. (en) Roger W. Romani et al., Q0906+6930 : The Highest-Redshift Blazar, Astrophysical Journal, 610, L9-L12 (2004), Article disponible sur arXiv: astro-ph/0406252. (en)
  30. L’élaboration d’une théorie de la gravité quantique est la condition de résolution de ce problème.
  31. Elle est égale au quart de la surface de l’horizon en unités de Planck, c’est-à-dire dans un système d’unités où la vitesse de la lumière c, la constante de Newton G, la constante de Planck (En physique, la constante de Planck, notée h, est une constante utilisée pour décrire la taille des quanta. Elle joue un rôle central dans la mécanique quantique et a...) réduite \hbar et la constante de Boltzmann (La constante de Boltzmann k (ou kB) a été introduite par Ludwig Boltzmann lors de sa définition de l'entropie en 1873. Le système étant à l'équilibre macroscopique, mais libre...) kB sont toutes égales à 1. Voir l’article entropie des trous noirs pour plus détails.
  32. (en) Raphael Bousso The holographic principle, Reviews of Modern Physics, 74 825-874 (2002)
  33. (en) Parthasarathi Majumdar, Black Hole Entropy and Quantum Gravity. Talk given at the National Symposium on Trends and Perspectives in Theoretical Physics, Calcutta, India, Apr 1998. Article disponible sur arXiv: gr-qc/9807045. (en)
  34. S. W. Hawking, Particle creation by black holes, Commun. Math. Phys., 43, 199-220 (1975) Voir en ligne, Erratum, ibid, 46, 206-206 (1976).
  35. En terme d’ordre de grandeur, la température d’un trou noir en unités de Planck correspond à l’inverse de sa taille en unités de Planck. Pour un trou noir stellaire, sa taile se compte en kilomètres, soit 1038 fois la longueur de Planck (En physique, la longueur de Planck ou échelle de Planck est une unité de longueur qui fait partie du système des unités de Planck. Notée , elle est déterminée uniquement en terme des constantes...). Sa température est donc de l’ordre de 10-38 fois la température de Planck, qui vaut dans les 1032 kelvins. La température d’un trou noir stellaire est donc de l’ordre de 10-6 kelvins.
  36. Voir par exemple Azar Khalatbari, Trous noirs primordiaux : Les poids plume (Une plume est, chez les oiseaux, une production tégumentaire complexe constituée de β-kératine. La plume est un élément caractéristique de la classe des oiseaux....) disparus, Ciel (Le ciel est l'atmosphère de la Terre telle qu'elle est vue depuis le sol de la planète.) & Espace, juin 2002 Voir en ligne.
  37. (en) Black holes and the information paradox. Prepared for GR17 : 17th International Conference on General Relativity and Gravitation, Dublin, Irlande, 18-24 juillet 2004
  38. (en) Voir l’article (payant) du magazine anglais Nature, intitulé " Hawking changes his mind about (L’about est un terme de charpenterie désignant l’extrémité façonnée d’une pièce de bois.) black holes " (Hawking a changé d’avis (Anderlik-Varga-Iskola-Sport (Anderlik-Varga-Ecole-Sport) fut utilisé pour désigner un projet hongrois de monoplace de sport derrière lequel...) sur les trous noirs).
  39. Voir aussi l’article sur le site space.com.
  40. (en) This Week’s Finds in Mathematical Physics (Week 207), entrée dans le blog (Un blog ou blogue est un site Web constitué par la réunion de billets agglomérés au fil du temps et souvent classés par ordre antéchronologique (les plus récents en premier)....) de John Baez consacrée à la conférence GR17 de Dublin 2004.
  41. (en) S. Hawking, Information Loss in Black Holes, Physical Review D, 72, 084013 (2005) Article disponible sur arXiv: hep-th/0507171. (en)
  42. (en)Article du blog de Lubos Motl consacré à la résolution d’Hawking du paradoxe de l’information pour les trous noirs.
  43. (en) Citation scientifiques de l’article de Hawking d’après la base de données (En informatique, une base de données (Abr. : « BD » ou « BDD ») est un lot d'informations stockées dans un...) SPIRES.
  44. Voir livre de Robert M. Wald dans la section bibliographie, page 156.
Source: Wikipédia publiée sous licence CC-BY-SA 3.0.

Vous pouvez soumettre une modification à cette définition sur cette page. La liste des auteurs de cet article est disponible ici.