Recherchez sur tout Techno-Science.net
       
Techno-Science.net : Suivez l'actualité des sciences et des technologies, découvrez, commentez
 A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | +
Pic de Hubbert

Le géophysicien Marion King Hubbert suggéra dans les années 1940 que la courbe de production d'une matière première donnée, et en particulier du pétrole, suivait une courbe (En géométrie, le mot courbe, ou ligne courbe désigne certains sous-ensembles du plan, de l'espace usuels. Par exemple, les droites, les segments, les lignes polygonales et les cercles sont des courbes.) en cloche (voir ci-contre). Cette courbe devint célèbre quand il en fit une présentation officielle à l'API en 1956, avec deux points importants :

  • cette courbe en cloche passe par un maximum, indiquant que la production décline forcément par la suite
  • elle est relativement symétrique par rapport à ce maximum.

L'extrapolation de la première partie de la courbe devait permettre de la tracer en totalité, et par intégration, d'en déduire les réserves de pétrole d'une région donnée, ainsi que le maximum de production.

Hubbert en déduisit que la production de pétrole américaine (48 états) passerait par un maximum en 1970. Sa présentation fut peu appréciée par ses pairs, et oubliée jusqu'en 1971, année où la production états-unienne atteignit son maximum puis déclina, conformément à ses prédictions.

Ses travaux furent exhumés, et l'on tenta d'appliquer ses conclusions à des champs, des zones géographiques et même à la production mondiale. Mais en 1973 et 1979, survinrent les deux chocs pétroliers qui donnèrent à la courbe une forme radicalement différente de la courbe de Hubbert (Le géophysicien Marion King Hubbert suggéra dans les années 1940 que la courbe de production d'une matière première donnée, et en particulier du pétrole, suivait une courbe en cloche (voir...), pour laquelle on perdit à nouveau de l'intérêt.

Beaucoup plus tard, avec la disponibilité des moyens de calcul informatique (L´informatique - contraction d´information et automatique - est le domaine d'activité scientifique, technique et industriel en rapport avec le traitement...), certains auteurs attribuèrent à la courbe de Hubbert une formule mathématique, plus pratique pour calculer l'intégrale de la courbe et faire des prévisions, voir calculs ci-dessous. Cette formule, ajoutée à la grande disponibilité de chiffres décrivant les productions pétrolières du monde (Le mot monde peut désigner :), donna à de nombreux auteurs la possibilité de faire des investigations et des prédictions sur la production mondiale de pétrole. La courbe ci-contre montre la modélisation de la production P(t), courbe en cloche, et du volume (Le volume, en sciences physiques ou mathématiques, est une grandeur qui mesure l'extension d'un objet ou d'une partie de l'espace.) extrait cumulé Q(t), courbe en S.

Modélisation de la production

La courbe de production a été modélisée par la formule suivante :

P(t) = \frac{1}{r} {e^{-t\over \tau}\over(1+e^{-t\over \tau})^2}=\frac{1}{r} {1\over2+2\cosh {t\over \tau}} \quad (1)

Cette formule ci-dessus est une simplification d'une formule plus générale :

{P(t)} = {a(n-m)\over \tau}\ { e^{-t\over \tau}\over (1+ne^{-t\over \tau})^2}

qui dérive elle-même de :

{\int_{0}^x P(t)\, \mathrm dt} = {a}\ {1+m\ e^{-t\over \tau}\over 1+n\ e^{-t\over \tau}}

Cette équation est fréquemment appelée "logistic curve" en anglais, termes qui évoquent autre chose pour les francophones.

En effet, si maintenant on utilise les conventions suivantes :

P_v(t) = production\, au\, temps\, t, en\, volume.temps^{-1}

Q(t) = part\, produite\,  au\, temps\, t, adimensionnel

Q_v(t) = volume\, produit\, au\, temps\, t\, en\, volume \!

U = volume\, total\, initial, en\, volume

Il vient :

\frac {dQ}{dt} = \frac {1}{U}\ \frac {dQ_v}{dt}

L'équation (1) vérifie l'équation de Verhulst :

\frac{dQ_v}{dt}=rQ_v\left(1 - \frac{Q_v}{U}\right) \qquad \!

qui elle, est bien appelée "équation logistique (La logistique est l'activité qui a pour objet de gérer les flux physiques d'une organisation, mettant ainsi à disposition des ressources correspondant aux besoins, aux...)" en français.

Ce type d'équation a été considérablement utilisé en dehors du domaine du pétrole, particulièrement dans le cadre de la modélisation de la croissance des populations (Équations de Lotka-Volterra) ; sous une autre forme, elle s'inclut dans la théorie du chaos, sous le nom de "logistic map" en anglais.

Si maintenant on fait l'approximation (Une approximation est une représentation grossière c'est-à-dire manquant de précision et d'exactitude, de quelque chose, mais encore assez significative pour être utile. Bien qu'une approximation soit le...) suivante : \frac {dQ_v}{dt} \approx \frac {\Delta Q_v}{\Delta t} alors la production annuelle P_A(t) \approx rQ_v (1 - \frac{Q_v}{U}) c'est-à-dire qu'elle est définie par une parabole (La parabole est l'intersection d'un plan avec un cône lorsque le plan est parallèle à l'une des génératrices du cône. Elle est un type de courbe dont les nombreuses...) d'intersection zéro et U. C'est cet ensemble (En théorie des ensembles, un ensemble désigne intuitivement une collection d’objets (les éléments de l'ensemble), « une multitude qui peut être comprise comme un...) de calculs qui a été mis à profit pour déterminer graphiquement U, soit la quantité de réserves pétrolières initiales.

Il ne semble pas qu'on trouve, dans les travaux des différents auteurs, une justification de l'utilisation de cette courbe ; les supporteurs de cette méthode soulignent simplement qu'elle s'applique très bien aux USA (48 états) ; certains auteurs ont fait des tests systématiques sur de nombreux pays (Pays vient du latin pagus qui désignait une subdivision territoriale et tribale d'étendue restreinte (de l'ordre de quelques centaines de km²), subdivision de la civitas gallo-romaine. Comme la...) et trouvent des résultats variables ; enfin la méthode appliquée à l'ensemble de la planète fournit des résultats très approximatifs. La forme de la courbe, ainsi que ses implications, font qu'on l'appelle également "Pic de Hubbert (Le géophysicien Marion King Hubbert suggéra dans les années 1940 que la courbe de production d'une matière première donnée, et en particulier du pétrole, suivait une...)".

Application

La courbe de production mondiale des pays hormis l’OPEP et la CEI a culminé en 2001
La courbe de production mondiale des pays hormis l’OPEP et la CEI a culminé en 2001
  • la production annuelle part de zéro ;
  • elle atteint un sommet qui ne sera jamais dépassé ;
  • une fois le pic passé, la production décline jusqu'à ce que la ressource soit complètement épuisée.

En pratique, le sommet est atteint lorsque la moitié environ des ressources ont été exploitées. La diminution inéluctable une fois ce cap franchi s'explique par la nature des gisements, même s'il reste des quantités importantes à exploiter :

  • les filons peuvent être aussi riches, mais ils sont plus profonds (les filons superficiels étant exploités en premier), donc plus difficiles à exploiter ;
  • les gisements sont moins riches, ou de plus petites tailles, ou le métal est plus difficile à extraire du minerai.

Dans le cas du pétrole, on a également ce phénomène, puisque le passage du pic amorce l'extration du pétrole dit non-conventionnel : il s'agit entre autres du deep water avec les gisements ultimes sous les pôles, en offshore (Offshore est un terme anglais désignant à l'origine les activités qui se déroulent au large des côtes. Il peut...) profond ou sous forme de schistes bitumeux. Ces schistes bitumeux (présents essentiellement en Alberta et au Venezuela) sont exploités à la pelleteuse, leur rendement énergétique global est très mauvais et extrêmement polluant (Le polluant a pour définition la plus souvent retenue : un altéragène biologique, physique ou chimique, qui audelà d'un certain seuil, et parfois dans certaines conditions (potentialisation), développe des impacts...). Malgré de grandes quantités théoriques, les débits ne serons jamais équivalent à ceux des grands gisements actuels (tel que Ghawar ou Cantarell) et ne pourront inverser le déclin global de production pétrolière.

Parallèles

Autres études

Bien avant Hubbert, l'économiste britannique William Stanley Jevons (1835-1882) s'était penché sur la raréfaction du charbon anglais (épuisement des veines les plus accessibles) et sur ses possibles conséquences économiques à terme, dans un ouvrage intitué The Coal Question. Il y décrit aussi ce que l'on a appelé plus tard le « paradoxe de Jevons » qui veut que le progrès des rendements (il s'était penché sur les exemples des locomotives ou des hauts-fourneaux, qui, au fil des améliorations techniques, pouvaient fournir autant en consommant moins de charbon) ne ralentit pas l'épuisement de la ressource, mais au contraire en encourage la consommation (il y aura plus de haut-fourneaux ou de locomotives).

Plusieurs personnes s'étant penchées sur l'épuisement des ressources naturelles, par exemple le géologue français Jean Laherrere, ont collectionné les exemples de ressources dont la production a décliné et peut se modéliser comme une courbe de Hubbert, ou parfois la somme de plusieurs (par exemple, certains pays ont produit du pétrole onshore, puis offshore, donnant deux courbes de Hubbert décalées).

Bien sûr, ce sont les ressources non renouvelables (énergies fossiles, minerais métalliques, par exemple), qui fournissent le plus d'exemples. Ainsi, pour les États-Unis, si la production de charbon dans son ensemble est encore à de longues décennies du pic, la production d'anthracite (le charbon de plus haute qualité, qui ne représente qu'une toute petite partie des réserves et a été exploité en priorité) donne une courbe de Hubbert assez précise, avec un pic de production remontant à 1920.

Courbe de Hubbert pour les ressources renouvelables

Il est intéressant, et inquiétant, de constater que la même courbe s'applique très souvent à des ressources naturelles qui en théorie sont renouvelables : par exemple, la production de morues en mer (Le terme de mer recouvre plusieurs réalités.) du Nord (Le nord est un point cardinal, opposé au sud.), de bois exotique dans des pays comme l'Indonésie ou le Brésil, ou les captures de baleines dans l'Atlantique nord avant l'interdiction de leur chasse. Ces ressources étaient renouvelables, mais leur exploitation a largement dépassé leur capacité de renouvellement et elles ont été épuisées de façon irréversible, comme s'il s'agissait de réserves fossiles.

À terme, la production agricole elle-même, a priori emblème de la « renouvelabilité », pourrait décrire un cycle de Hubbert : depuis ce que l'on appelé la « révolution verte », l'agriculture n'est plus « durable » : la production a augmenté de façon vertigineuse (permettant de multiplier la population mondiale (La population mondiale désigne le nombre d'êtres humains vivant sur Terre à un instant donné. Elle est estimée à 6,793 milliards au 1er janvier...) par 2,5 de 1950 à 2005) grâce à la déforestation (qui en zone tropicale ne donne que des terres médiocres s'épuisant vite, d'où une fuite en avant jusqu'à la disparition totale de la forêt primaire), à l'irrigation (L’irrigation est l'opération consistant à apporter artificiellement de l’eau à des végétaux cultivés pour en...) (utilisant en partie des sources d'eaux souterraines peu ou pas renouvelables, qui dans certaines régions du monde s'épuisent rapidement, en contribuant in fine aussi à la salinisation et désertification)[réf. nécessaire] et enfin aux engrais (Les engrais sont des substances, le plus souvent des mélanges d'éléments minéraux, destinées à apporter aux plantes des compléments...) et pesticides réalisés à partir de ressources fossiles (gaz et pétrole).

La révolution verte a donc produit une agriculture augmentant peut-être de façon non durable la capacité d'accueil de la planète, en détruisant l'environnement (L'environnement est tout ce qui nous entoure. C'est l'ensemble des éléments naturels et artificiels au sein duquel se déroule la vie humaine. Avec les enjeux écologiques actuels, le terme environnement tend...) et des ressources lentement renouvelables tels que les sols agricoles. Il est donc possible qu'à terme la population mondiale suive elle aussi une courbe de Hubbert, avec un maximum, puis une diminution[réf. nécessaire].

Source: Wikipédia publiée sous licence CC-BY-SA 3.0.

Vous pouvez soumettre une modification à cette définition sur cette page. La liste des auteurs de cet article est disponible ici.