Recherchez sur tout Techno-Science.net
       
Techno-Science.net : Suivez l'actualité des sciences et des technologies, découvrez, commentez
Catégories
Techniques
Sciences
Encore plus...
Techno-Science.net
Partenaires
Organismes
 CEA
 ESA
Sites Web
Photo Mystérieuse

Que représente
cette image ?
 A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | +
Polyèdre
Un dodécaèdre
Un dodécaèdre

Traditionnellement, un polyèdre est une forme géométrique à 3 dimensions ayant des faces planes qui se rencontrent le long d'arêtes droites. Le mot polyèdre provient du grec classique πολυεδρον, à partir de poly-, racine de πολυς, "beaucoup" + -edron, forme de εδρον, "base", "siège" ou "face".

Les polyèdres ont fasciné l'humanité depuis la préhistoire. Ils ont été étudiés formellement par les anciens Grecs, et continuent de nos jours à fasciner les étudiants, les mathématiciens et les artistes.

La définition (Une définition est un discours qui dit ce qu'est une chose ou ce que signifie un nom. D'où la division entre les définitions réelles et les définitions nominales.) ci-dessus peut sembler suffisamment claire pour la plupart d'entre nous, mais pas pour un mathématicien. Dans une remarque souvent citée mais rarement observée, Grünbaum (1994) nota que :

"Le Péché Originel dans la théorie des polyèdres remonte à Euclide, puis à travers Kepler, Poinsot, Cauchy et beaucoup d'autres... [en cela] qu'à chaque étape ... les auteurs ont échoué a définir ce que sont les 'polyèdres' ..."

Et depuis ce jour (Le jour ou la journée est l'intervalle qui sépare le lever du coucher du Soleil ; c'est la période entre deux nuits, pendant laquelle les rayons du Soleil éclairent le ciel. Son début (par rapport à minuit heure...), il n'existe pas de définition universellement agréée sur ce qui fait que quelque chose est un polyèdre.

Nous pouvons au moins dire qu'un polyèdre est construit à partir de différentes sortes d'éléments ou d'entités, chacun associé avec un nombre (La notion de nombre en linguistique est traitée à l’article « Nombre grammatical ».) différent de dimensions :

  • 3 dimensions : le corps est limité par les faces, et correspond habituellement au volume (Le volume, en sciences physiques ou mathématiques, est une grandeur qui mesure l'extension d'un objet ou d'une partie de l'espace.) compris à l'intérieur.
  • 2 dimensions : une face est limité par un circuit d'arête, et est habituellement une région plane (La plane est un outil pour le travail du bois. Elle est composée d'une lame semblable à celle d'un couteau, munie de deux poignées, à chaque extrémité de la lame. Elle permet le...) appelée un polygone. Les faces mises ensemble (En théorie des ensembles, un ensemble désigne intuitivement une collection d’objets (les éléments de l'ensemble), « une multitude qui peut être comprise comme...) forment la surface (Une surface désigne généralement la couche superficielle d'un objet. Le terme a plusieurs acceptions, parfois objet géométrique, parfois frontière physique, et est souvent abusivement confondu avec...) polyédrique.
  • 1 dimension : une arête joint un sommet à un autre et une face à une autre, et est habituellement une droite d'une certaine sorte. Les arêtes mises ensemble forment le squelette (Le squelette est une charpente animale rigide servant de support pour les muscles. Il est à la base de l'evolution des vertébrés. Celui ci leur a fourni un avantage...) polyédrique.
  • 0 dimension : un sommet est un point (Graphie) de coin.
  • -1 dimension : la nullité est une sorte de non-entité requise par les théories abstraites.

Plus généralement en mathématiques (Les mathématiques constituent un domaine de connaissances abstraites construites à l'aide de raisonnements logiques sur des concepts tels que les nombres, les figures, les structures et les...) et dans d'autres disciplines, le terme 'polyèdre' est utilisé pour faire référence à une variété de constructions reliées, certaines géométriques et d'autres purement algébriques ou abstraites.

Un polyèdre est un exemple à 3 dimensions d'un polytope (En géométrie, un polytope est la généralisation à toutes dimensions de la notion de polygone pour deux dimensions et de polyèdre pour trois dimensions. Ce terme est aussi...) plus général dans un nombre quelconque de dimensions.

Caractéristiques

Nomenclature

Les polyèdres sont souvent nommés selon le nombre de faces. La nomenclature est basée de nouveau sur le grec classique, par exemple le tétraèdre (Le tétraèdre (du grec tétra : quatre), est un solide composé de quatre triangles, de la famille des pyramides, donc des cônes.) (4), pentaèdre (5), hexaèdre (6), heptaèdre (7), triacontaèdre (30) et ainsi de suite.

La page polygone contient une liste des préfixes grecs utilisés pour nommer les polygones, les polyèdres et les polytopes. Il suffit évidemment de remplacer -gone par -èdre.

Arêtes

Les arêtes ont deux caractéristiques importantes (à moins que le polyèdre est complexe) :

  • Une arête joint simplement deux sommets.
  • Une arête joint simplement deux faces.

Ces deux caractéristiques sont duales l'une de l'autre.

Caractéristique d'Euler

Soit un polyèdre convexe (En géométrie, un objet est convexe si pour toute paire de points { A , B } de cet objet, le segment [AB] qui les joint est entièrement contenu dans l'objet. Par exemple, un cube plein, un disque ou une boule sont...), on note :

  • f   le nombre de faces de celui-ci,
  • a   le nombre d'arêtes de celui-ci,
  • s   le nombre de sommets de celui-ci,

On peut démontrer qu'on a toujours la relation d'Euler :   f - a + s = 2 \, pour un polyèdre convexe. Ce nombre est noté \chi\,

Dualité

Pour chaque polyèdre, il existe un polyèdre dual ayant des faces à la place des sommets originaux et vice versa. Dans la plupart des cas, le dual peut être obtenu par le processus de réciprocité sphérique. Le dual d'un polyèdre, s'obtient en reliant les centres des faces adjacentes.

Polyèdres traditionnels

Un petit rhombicosidodécaèdre
Un petit rhombicosidodécaèdre

Un polyèdre est traditionnellement une forme tridimensionnelle qui se compose d'un nombre fini de faces polygonales qui sont des parties de plans; les faces se rencontrent par paires le long des arêtes qui sont des segments de droite, et les arêtes se rencontrent aux points nommés sommets. Les cubes, les prismes et les pyramides sont des exemples de polyèdres. Le polyèdre entoure un volume limité dans l'espace à trois dimensions; quelquefois ce volume intérieur est considéré être une partie du polyèdre, quelquefois, seule la surface est considérée.

Les polyèdres traditionnels incluent les cinq polyèdres convexes réguliers que l'on nomme les solides de Platon : le tétraèdre (4 faces), le cube (En géométrie euclidienne, un cube est un prisme dont toutes les faces sont carrées. Les cubes figurent parmi les solides les plus remarquables de l'espace....) (ou hexaèdre) (6 faces), l'octaèdre (Un octaèdre (du grec oktô, huit et hedra, face) est un polyèdre à huit faces. Si ses faces sont triangulaires, il possède alors douze arêtes et six sommets.) (8 faces), le dodécaèdre (Un dodécaèdre est un solide composé de 12 faces. Le préfixe dodéca-, d'origine grecque, fait référence au nombre de faces.) (12 faces) et l'icosaèdre (Un icosaèdre est un polyèdre à 20 faces. Le préfixe icosa-, d'origine grecque, fait référence au nombre de faces.) (20 faces). Les autres polyèdres traditionnels sont les quatre polyèdres non-convexes réguliers (les solides de Kepler-Poinsot), les treize solides d'Archimède convexes et les 53 polyèdres uniformes restants.

Plus petit polyèdre

Un polyèdre possède au moins : 4 faces, 4 sommets et 6 arêtes. Le plus petit polyèdre est le tétraèdre.

Convexité, concavité

Un polyèdre est dit être convexe si sa frontière (Une frontière est une ligne imaginaire séparant deux territoires, en particulier deux États souverains. Le rôle que joue une...) (incluant ses faces et ses arêtes) ne se coupe pas elle-même et si le segment joignant deux points quelconques du polyèdre fait partie de celui-ci ou de son intérieur. Autrement dit, un polyèdre est convexe si toutes ses diagonales sont entièrement contenues dans son intérieur. Il est possible de donner une définition barycentrique d'un tel polyèdre : Soit A1, A2, \cdots, An, n points non coplanaires ; le polyèdre convexe A_1A_2{\cdots}A_n est l'ensemble des points M barycentres de : A1, A2, \cdots, An affectés de coefficients α1, α2, \cdots, αn où chaque αi est positif.

Les polyèdres symétriques

La plupart des polyèdres étudiés sont fortement symétriques. Il existe diverses classes de ces polyèdres :

  • Sommet uniforme : si tous les sommets sont les mêmes, au sens (SENS (Strategies for Engineered Negligible Senescence) est un projet scientifique qui a pour but l'extension radicale de l'espérance de vie humaine. Par une évolution progressive allant du ralentissement du...) où pour deux sommets quelconques, il existe une symétrie du polyèdre appliquant le premier isométriquement sur le deuxième.
  • Arête uniforme : si toutes les arêtes sont les mêmes, au sens où pour deux arêtes quelconques, il existe une symétrie du polyèdre appliquant le premier isométriquement sur le deuxième.
  • Face uniforme : si toutes les faces sont les mêmes, au sens où pour deux faces quelconques, il existe une symétrie du polyèdre appliquant le premier isométriquement sur le deuxième.
  • Quasi-régulier : si le polyèdre est d'arête uniforme mais pas soit de face uniforme ou de sommet uniforme.
  • Semi-régulier : si le polyèdre est de sommet uniforme mais pas de face uniforme et chaque face est un polygone régulier. (c'est une des nombreuses définitions du terme, dépendant de l'auteur, qui chevauchent la catégorie quasi-régulière).

Un polyèdre est semi-régulier si ses faces sont constituées de plusieurs sortes de polygones réguliers, et que tous ses sommets sont identiques. Ainsi sont par exemple les solides d'Archimède, les prismes et les antiprismes réguliers. La terminologie ne paraît pas tout (Le tout compris comme ensemble de ce qui existe est souvent interprété comme le monde ou l'univers.) à fait arrêtée. On parle parfois de solides semi-réguliers de la première espèce pour désigner ceux de ces solides qui sont convexes, et de solides uniformes pour le cas général. Les polyèdres de Catalan ne sont pas semi-réguliers, mais ont des faces identiques et des sommets réguliers. On dit parfois de tels polyèdres qu'ils sont semi-réguliers de la seconde espèce.

  • Régulier : si le polyèdre est de sommet uniforme, d'arête uniforme et de face uniforme. (l'uniformité des sommets et l'uniformité des arêtes combinés implique que les faces sont régulières).

Partons d'un sommet et prenons les points situés à une distance donnée (Dans les technologies de l'information, une donnée est une description élémentaire, souvent codée, d'une chose, d'une transaction, d'un événement,...) sur chacune des arêtes. Relions ces points, nous obtenons le 'polygone du sommet' (vertex figure...). Si celui-ci est régulier on dit que le sommet est régulier. Un polyèdre est régulier s'il est constitué de faces toutes identiques et régulières, et que tous ses sommets sont identiques. Ils sont au nombre de neuf, classiquement répartis en deux familles :

  • les cinq solides de Platon : tétraèdre, cube, octaèdre, dodécaèdre et icosaèdre réguliers. Platon considérait ces solides comme l'image de la perfection. Les mathématiques modernes rattachent ces exemples à la notion de groupe.
  • les quatre polyèdres de Kepler-Poinsot, qui ne sont pas convexes.
  • Uniforme : si le polyèdre est de sommet uniforme et chaque face est un polygone régulier, i.e. il est régulier ou semi-régulier.

On appelle solide uniforme un solide dont toutes les faces sont régulières et tous les sommets identiques. Ainsi sont donc tous les solides réguliers et semi-réguliers précédents. Ils sont en tout 75, auxquels il faut ajouter les deux familles infinies des prismes et des antiprismes.

Bien sûr, il est facile de tordre de tels polyèdres, de telle façon qu'ils ne sont plus symétriques. Mais, lorsqu'un nom de polyèdre est donné, tel que l'icosidodécaèdre, la géométrie (La géométrie est la partie des mathématiques qui étudie les figures de l'espace de dimension 3 (géométrie euclidienne) et, depuis le XVIIIe siècle, les figures d'autres types d'espaces...) la plus symétrique est toujours impliquée, sauf indication (Une indication (du latin indicare : indiquer) est un conseil ou une recommandation, écrit ou oral.) contraire.

Les groupes de symétrie polyédriques sont tous groupes de points et incluent :

  • T - symétrie tétraèdrique chirale ; le groupe de rotation pour un tétraèdre régulier; ordre 12.
  • Td - symétrie tétraèdrique complète; le groupe de symétrie pour un tétraèdre régulier; ordre 24.
  • Th - symétrie pyritoèdrique ; ordre 24. La symétrie d'un pyritoèdre (lien).
  • O - symétrie octaèdrique chirale ; le groupe de rotation du cube et de l'octaèdre; ordre 24.
  • Oh - symétrie octaèdrique complète ; le groupe de symétrie du cube et de l'octaèdre; ordre 48.
  • I - symétrie icosaèdrique chirale ; le groupe de rotation de l'icosaèdre et du dodécaèdre; ordre 60.
  • Ih - symétrie icosaèdrique complète ; le groupe de symétrie de l'icosaèdre et du dodécaèdre; ordre 120.
  • Cnv - symétrie pyramidale à n plis
  • Dnh - symétrie prismatique à n plis
  • Dnv - symétrie antiprismatique à n plis

Les polyèdres à symétrie chirale n'ont pas de symétrie axiale et par conséquent ont deux formes énantiomorphes qui sont les réflexions l'un de l'autre. Les polyèdres adoucis ont cette propriété.

Polyèdres réguliers

Un polyèdre régulier (Un polyèdre est dit régulier s'il est constitué de faces toutes identiques et régulières, et que tous ses sommets sont identiques. Ils sont au nombre de neuf, dont cinq sont...) possède des faces régulières et des sommets réguliers. Le dual d'un polyèdre régulier est aussi régulier.

  • Les polyèdres réguliers convexes sont aussi appelés les solides de Platon.
  • Les polyèdres réguliers étoilés sont aussi appelés les polyèdres de Kepler-Poinsot.

Polyèdres quasi-réguliers et duaux

Les polyèdres quasi-réguliers sont à faces régulières, de sommet uniforme et d'arête uniforme. Il en existe deux convexes :

Les polyèdres duaux quasi-réguliers sont d'arête uniforme et de face uniforme. Il en existe deux convexes, en correspondance (La correspondance est un échange de courrier généralement prolongé sur une longue période. Le terme désigne des échanges de courrier personnels plutôt qu'administratifs.) avec les deux précédents :

Les polyèdres semi-réguliers et leurs duaux

Le terme semi-régulier est diversement défini. Une définition consiste en "des polyèdres de sommet uniforme avec deux sortes ou plus de faces polygonales". Ils sont effectivement les polyèdres uniformes qui ne sont ni réguliers, ni quasi-réguliers.

Les polyèdres convexes et leurs duaux incluent les ensembles des :

Uniforme convexe Dual convexe Uniforme étoilé Dual étoilé
Régulier Solides de Platon Solides de Kepler-Poinsot
Quasi-régulier Solides d'Archimède Solides de Catalan (pas de nom spécial) (pas de nom spécial)
Semi-régulier (pas de nom spécial) (pas de nom spécial)
Prismes Diamants Prismes étoilés Diamants étoilés
Antiprismes Trapèzoèdres Antiprismes étoilés Trapèzoèdres étoilés

Il existe aussi beaucoup de polyèdres uniformes non-convexes, incluant des exemples de divers sortes de prismes.

Polyèdres nobles

Un polyèdre noble est à la fois isoèdrique (face égale) et isogonal (de coins égaux). En plus des polyèdres réguliers, il existe beaucoup d'autres exemples.

Le dual d'un polyèdre noble est aussi un polyèdre noble.

Autres polyèdres à faces régulières

Faces égales régulières

Quelques familles de polyèdres, où chaque face est un polygone de même sorte :

  • Les deltaèdre ont des triangles équilatéraux pour faces.
  • En ce qui concerne les polyèdres dont les faces sont toutes des carrés : il n'existe que le cube, si les faces coplanaires ne sont pas permises, même si elles sont déconnectées. Autrement, il existe aussi le résultat du collage de six cubes sur les faces d'un seul, tous les sept de la même taille; il possède 30 faces carrées (comptant pour des faces déconnectées dans le même plan comme séparé). Ceci peut être étendu à une, deux ou trois directions : nous pouvons considérer l'union d'un grand nombre arbitraire de copies de ces structures, obtenues par translations de (exprimé en tailles de cubes) (2,0,0), (0,2,0), et/ou (0,0,2), par conséquent avec chaque paire (On dit qu'un ensemble E est une paire lorsqu'il est formé de deux éléments distincts a et b, et il s'écrit alors :) adjacente ayant un cube en commun. Le résultat peut être un ensemble quelconque de cubes connectés avec les positions (a,b,c), avec les entiers a,b,c ou un au plus est pair.
  • Il n'existe pas de nom particulier pour les polyèdres qui ont toutes les faces en forme de pentagones équilatéraux ou en pentagrammes. Il existe une infinité d'entre-eux, mais seulement un est convexe : le dodécaèdre. Le reste est assemblé par (collage) combinaisons de polyèdres réguliers décrit précédemment : le dodécaèdre, le petit dodécaèdre étoilé, le grand dodécaèdre étoilé et le grand icosaèdre.

Il n'existe pas de polyèdre dont les faces sont toutes identiques et qui sont des polygones réguliers avec six cotés ou plus car le point de rencontre de trois hexagones réguliers définit un plan. (voir polyèdre oblique infini (Le mot « infini » (-e, -s ; du latin finitus, « limité »), est un adjectif servant à qualifier quelque chose qui n'a pas de limite en nombre ou en...) pour les exceptions).

Deltaèdres

Un deltaèdre est un polyèdre dont les faces sont toutes des triangles équilatéraux. Il en existe une infinité, mais seuls huit sont convexes :

  • 3 polyèdres réguliers convexes (3 des solides de Platon)
    • Tétraèdre
    • Octaèdre
    • Icosaèdre
  • 5 polyèdre non-uniformes convexes (5 des solides de Johnson)
    • Diamant (Le diamant est un minéral composé de carbone (tout comme le graphite et la lonsdaléite), dont il représente l'allotrope de haute pression, qui cristallise dans le système cristallin cubique. C'est le plus dur (dureté...) triangulaire
    • Diamant pentagonal
    • Disphénoïde adouci
    • Prisme triangulaire triaugmenté
    • Diamant carré (Un carré est un polygone régulier à quatre côtés. Cela signifie que ses quatre côtés ont la même longueur et ses quatre angles la même mesure. Un...) gyroallongé

Les solides de Johnson

Norman Johnson a cherché les polyèdres non-uniformes ayant des faces régulières. En 1966, il publia une liste de 92 solides convexes, maintenant connue comme les solides de Johnson, et leur donna leurs noms et leurs nombres. Il ne prouva pas qu'ils n'étaient que 92, mais il conjectura qu'ils n'y en avait pas d'autres. Victor Zalgaller en 1969 démontra que la liste de Johnson était complète.

Les autres familles de polyèdres

Les pyramides

  • Les pyramides sont auto-duales.

Les stellations et les facettages

La stellation d'un polyèdre est le processus d'expansion des faces (dans leurs plans), c’est-à-dire qu'elles se rencontrent pour former un nouveau polyèdre.

C'est la réciproque exacte du facettage qui est le processus d'enlèvement de parties d'un polyèdre sans créer de nouveau sommets quelconques. Le facettage permet d'obtenir, entre autres, de nombreux nouveaux solides semi-réguliers concaves. On construit de nouvelles faces régulières en regroupant les arêtes d'un polyèdre semi-régulier. Le plus simple est un héptaèdre construit à partir de l'octaèdre, constitué de trois faces carrées et de quatre faces triangulaires.

Troncatures

C'est l'opération qui consiste à raboter un sommet ou une arête. Elle conserve les symétries du solide.

Troncature des sommets

Cette opération permet d'obtenir sept des solides d'Archimède à partir des solides de Platon. On remarque en effet qu'en rabotant de plus en plus les arêtes d'un cube on obtient successivement le cube tronqué, le cuboctaèdre, l'octaèdre tronqué et enfin l'octaèdre. On peut aussi suivre cette série dans l'autre sens.

En partant du dodécaèdre on obtient le dodécaèdre tronqué, l'icosidodécaèdre, l'icosaèdre tronqué, puis l'octaèdre.

Le tétraèdre donne le tétraèdre tronqué.

On peut appliquer cette opération au grand dodécaèdre ou au grand icosaèdre et obtenir des solides uniformes concaves.

Troncature des arêtes

À partir d'un cube, cette opération donne successivement un cuboctaèdre, puis un dodécaèdre rhombique.

À partir d'un dodécaèdre, on obtient l'icosidodécaèdre puis le triacontaèdre rhombique.

Les composés

Les composés polyèdriques sont formés comme des composés de deux polyèdres et plus.

Ces composés partagent souvent les mêmes sommets que les autres polyèdres et sont souvent formés par stellation. Certains sont listés dans la liste des modèles de polyèdre de Wenninger.

Les zonoèdres

Un zonoèdre est un polyèdre convexe où chaque face est un polygone avec une symétrie inverse (En mathématiques, l'inverse d'un élément x d'un ensemble muni d'une loi de composition interne · notée multiplicativement, est...) ou, de manière équivalente, des rotations à 180°.

Généralisations de polyèdres

Le mot 'polyèdre' a été employé pour une variété d'objets ayant des propriétés structurelles similaires aux polyèdres traditionnels.

Les polyèdres complexes

Un polyèdre complexe est un polyèdre qui est construit dans un espace à trois dimensions complexe. Cet espace possède six dimensions : trois dimensions réelles correspondant à l'espace ordinaire, avec une dimension (Dans le sens commun, la notion de dimension renvoie à la taille ; les dimensions d'une pièce sont sa longueur, sa largeur et sa profondeur/son épaisseur, ou bien son diamètre si...) imaginaire accompagnant chacune. Voir par exemple Coxeter (1974).

Les polyèdres courbés

Certains champs d'étude permettent aux polyèdres d'avoir des faces et des arêtes courbées.

Les polyèdres sphériques

La surface d'une sphère (Une sphère est une surface à 3 dimensions dont tous les points sont situés à une même distance d'un point appelé centre. La valeur de cette distance commune au centre...) peut être divisée par des segments en des régions limitées, pour former des polyèdres sphériques. Une grande partie de la théorie des polyèdres symétriques est dérivée (La dérivée d'une fonction est le moyen de déterminer combien cette fonction varie quand la quantité dont elle dépend, son argument, change. Plus...) de manière plus pratique de cette manière.

Les polyèdres courbés remplissant l'espace

Les deux types importants sont :

  • Les bulles dans les mousses et l'écume.
  • Les formes remplissant l'espace utilisées dans l'architecture (L’architecture peut se définir comme l’art de bâtir des édifices.). Voir par exemple Pearce (1978).

Les polyèdres généraux

Plus récemment, les mathématiques ont défini un polyèdre comme un ensemble dans un espace affine (Historiquement, la notion d’espace affine est issue du choc dû à la découverte de nouvelles géométries parfaitement cohérentes, mais différant de celle d'Euclide par...) réel (ou euclidien) de dimensions quelconques n qui possède des cotés plats. Il peut être défini commen l'union d'un nombre fini de polyèdres convexes, où un polyèdre convexe est un ensemble quelconque qui est l'intersection d'un nombre fini de demi-espaces. Il peut être borné ou non-borné. Dans ce sens, un polytope est un polyèdre borné.

Tous les polyèdres traditionnels sont des polyèdres généraux, et en plus, il existe des exemples tels que :

  • Un quadrant (En géométrie euclidienne : quart de la circonférence du cercle (lui-même divisé en 100 grades ou 90 degrés et leurs subdivisions respectives). ...) dans le plan. Par exemple, la région du plan cartésien constitué de tous les points au-dessus de l'axe des abscisses et à droite de l'axe des ordonnées : { ( x, y ) : x ≥ 0, y ≥ 0 }. Ses cotés sont les deux axes positifs.
  • Un octant dans l'espace à trois dimensions euclidien, { ( x, y, z ) : x ≥ 0, y ≥ 0, z ≥ 0 }.
  • Un prisme d'extension infinie. Par exemple, un prisme carré doublement infini dans l'espace tridimensionnel, constitué d'un carré dans le plan xy balayé le long de l'axe z : { ( x, y, z ) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 }.
  • Chaque cellule dans un pavage (Un pavage (ou dallage) est une partition d'un espace (généralement un espace euclidien comme le plan ou l'espace tridimensionnel) par un ensemble fini d'éléments appelé tuiles (plus...) de Voronoï est un polyèdre convexe. Dans le pavage de Voronoï d'un ensemble S, la cellule A correspondante à un point cS est borné (par conséquent un polyèdre traditionnel) lorsque c est placé dans l'intérieur de l'enveloppe convexe (En mathématiques, l'enveloppe convexe d'un objet ou d'un ensemble d'objets est l'ensemble convexe de taille minimale qui contient ces objets. L'enveloppe convexe d'un ensemble A peut aussi être définie comme...) de S, et autrement (lorsque c est placé sur la frontière de l'enveloppe convexe de S) A est non-borné.
Source: Wikipédia publiée sous licence CC-BY-SA 3.0.

Vous pouvez soumettre une modification à cette définition sur cette page. La liste des auteurs de cet article est disponible ici.