Recherchez sur tout Techno-Science.net
       
Techno-Science.net : Suivez l'actualité des sciences et des technologies, découvrez, commentez
Catégories
Techniques
Sciences
Encore plus...
Techno-Science.net
Partenaires
Organismes
 CEA
 ESA
Sites Web
Photo Mystérieuse

Que représente
cette image ?
 A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | +
Intervalle (mathématiques)

En mathématiques, un intervalle (du latin intervallum) est étymologiquement un ensemble compris entre deux valeurs. Cette notion première s'est ensuite développée jusqu'à aboutir aux définitions suivantes.

Intervalles de R

Inventaire

Initialement, on appelle intervalle réel un ensemble (En théorie des ensembles, un ensemble désigne intuitivement une collection d’objets (les éléments de l'ensemble), « une multitude qui peut être comprise comme un tout », comme...) de nombres délimité par deux nombres réels constituant une borne inférieure et une borne supérieure. Un intervalle contient tous les nombres réels compris entre ces deux bornes.

Cette définition (Une définition est un discours qui dit ce qu'est une chose ou ce que signifie un nom. D'où la division entre les définitions réelles et les définitions nominales.) regroupe les intervalles des types suivants (avec (a,b) \in \mathbb{R}^2,\ a<b):

  • \{x \in \mathbb{R} ; a < x < b \} = ]a; b[
  • \{x \in \mathbb{R} ;  a \leq x \leq b \} = [a ; b]
  • \{x \in \mathbb{R} ; a < x \leq b \} = ]a; b]
  • \{x \in \mathbb{R} ; a \leq x < b \} = [a; b[

Les intervalles du premier type sont appelés intervalles ouverts; les seconds intervalles fermés, et les deux derniers intervalles semi-ouverts.

À ces intervalles se sont ajoutés les ensembles des réels inférieurs à une valeur, ou supérieurs à une valeur. On ajoute donc les intervalles de ce type :

  • \left\{x \in \mathbb{R} ; x < a\right\} = ]-\infty; a[
  • \left\{x \in \mathbb{R} ; x \leq a\right\} = ]-\infty; a]
  • \left\{x \in \mathbb{R} ; x > a \right\} = ]a; +\infty[
  • \left\{x \in \mathbb{R} ; x \geq a\right\} = [a; +\infty[

Auxquels se sont ajoutés, pour faire bonne mesure, les intervalles :

  • L'ensemble vide (En mathématiques, l'ensemble vide est l'ensemble ne contenant aucun élément.) \ \emptyset
  • \left\{a\right\} = [a; a]
  • \mathbb{R} = ]-\infty; +\infty[

Définition générale

Un intervalle de \mathbb{R} est une partie \ I de \mathbb{R} vérifiant la propriété suivante:

Pour tout (Le tout compris comme ensemble de ce qui existe est souvent interprété comme le monde ou l'univers.) x et y de \ I, pour tout réel z, si x \leq z \leq y alors z\in I

Un ensemble vérifiant une telle propriété est un ensemble convexe (En géométrie, un objet est convexe si pour toute paire de points { A , B } de cet objet, le segment [AB] qui les joint est entièrement contenu dans l'objet. Par exemple, un cube plein,...).

Les intervalles de \mathbb{R} regroupent donc toutes les parties convexes de \mathbb{R}.

Union et intersection d'intervalles de R

Une intersection d'intervalles de R est toujours un intervalle. L'intervalle qui découle d'une intersection d'intervalles est composé des éléments (les nombres) qui sont présents à la fois dans le premier intervalle et dans le second intervalle. Par exemple,

  • [-3; 5[ \cap ]- \infty; 2] = [-3; 2]
  • [-3; 5[ \cap [2; + \infty[ = [2; 5[
  • [3; 5[ \cap ]- \infty; 2] = \emptyset

Une union d'intervalles de R n'est pas toujours un intervalle. Ce sera un intervalle si l'ensemble obtenu reste convexe (intuitivement s'il n'y a pas de "trou"). L'intervalle qui découle d'une union d'intervalles est composé des éléments (les nombres) allant de la borne inférieure du premier intervalle à la borne supérieure du deuxième intervalle. Par exemple,

  • ]- \infty; 2] \cup [-3; 5[= ]- \infty; 5[
  • [-3; 5[ \cup [2; + \infty[ = [-3; + \infty[
  • [3; 5[ \cup ]- \infty; 2] = ]- \infty; 2] \cup [3; 5[ (On préfère ranger les intervalles par ordre croissant de leurs bornes.)

Cette union ne forme pas un intervalle étant donné qu'il y a un trou entre 2 et 3.

Connexité

Les parties connexes de \R (pour la topologie (La topologie est une branche des mathématiques concernant l'étude des déformations spatiales par des transformations continues (sans arrachages ni recollement des structures).) usuelle) sont exactement les intervalles.

Décomposition (En biologie, la décomposition est le processus par lequel des corps organisés, qu'ils soient d'origine animale ou végétale dès...) des ouverts de R

On montre que tout ouvert de \R peut s'écrire comme une réunion dénombrable d'intervalles ouverts.

En analyse et en topologie

Les intervalles sont les parties de \mathbb{R} les plus intéressantes dès que l'on parle de continuité (En mathématiques, la continuité est une propriété topologique d'une fonction. En première approche, une fonction est continue si, à des...) et de dérivée (La dérivée d'une fonction est le moyen de déterminer combien cette fonction varie quand la quantité dont elle dépend, son argument, change. Plus précisément, une dérivée est une expression (numérique ou algébrique) donnant...).

On trouve alors (entre autres) pour les fonctions réelles d'une variable (En mathématiques et en logique, une variable est représentée par un symbole. Elle est utilisée pour marquer un rôle dans une formule, un prédicat ou un algorithme. En...) réelle, des propriétés telles que :

  • L'image par une fonction continue d'un intervalle de \mathbb{R} est un intervalle de \mathbb{R} (théorème des valeurs intermédiaires)
  • Une fonction dérivable et à dérivée identiquement nulle sur un intervalle est constante sur cet intervalle.
  • Une fonction dérivable est monotone sur un intervalle si et seulement si sa dérivée garde un signe constant sur cet intervalle

Remarque : La fonction \ f : \R_* \to \R définie par \ f(x) = \frac{|x|}{x} est dérivable sur \ \R_*, et sa dérivée est identiquement nulle ; mais \ f n'est pas constante. Ceci tient au fait que \ \R_* n'est pas un intervalle.

Intervalle dans un ensemble muni d'une relation d'ordre total ( Total est la qualité de ce qui est complet, sans exception. D'un point de vue comptable, un total est le résultat d'une addition, c'est-à-dire une somme. Exemple : "Le total des dettes". En...)

Dans tout ensemble \S muni d'une relation d'ordre total \leq, on peut définir des intervalles, de la même façon que dans \mathbb{R}, comme des ensembles des types suivants :

  • \left\{z \in S ; a < z < b \right\}, \left\{z \in S ; a \leq z \leq b \right\}, \left\{z \in S ; a < z \leq b \right\}, \left\{z \in S ; a \leq z < b \right\}
  • \left\{z \in S ; z < a\right\}, \left\{z \in S ; z \leq a\right\}, \left\{z \in S ; z > a \right\}, \left\{z \in S ; z \geq a\right\}
  • \emptyset, \ S

Il est donc tout à fait possible de définir dans \mathbb{Z} l'intervalle des entiers relatifs compris entre \ -5 et \ 3 mais il serait dangereux de le noter \ [-5;3] sans avertissement préalable à cause du risque de confusion avec la notation des intervalles de \mathbb{R}. On utilise parfois la notation avec des crochets blancs ? − 5;3? (Faire Ctrl-+ avec Firefox pour augmenter la taille des caractères ou choisir une grande police pour voir que la barre verticale (La verticale est une droite parallèle à la direction de la pesanteur, donnée notamment par le fil à plomb.) est dédoublée).

Ces intervalles \ I vérifient toujours la propriété :

Pour tous éléments \ a, b de \ I, on a [a; b] \subset I (convexité d'un intervalle) ,

ainsi que la propriété d'intersection : toute intersection d'intervalles est un intervalle.

Source: Wikipédia publiée sous licence CC-BY-SA 3.0.

Vous pouvez soumettre une modification à cette définition sur cette page. La liste des auteurs de cet article est disponible ici.