Recherchez sur tout Techno-Science.net
       
Techno-Science.net : Suivez l'actualité des sciences et des technologies, découvrez, commentez
 A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | +
Point (géométrie)

En géométrie, un point est le plus petit élément constitutif de l'espace de travail.

En géométrie euclidienne élémentaire

Le point, selon Euclide, est ce qui n'a aucune partie. On peut aussi dire plus simplement qu'un point (Graphie) ne désigne pas un objet (De manière générale, le mot objet (du latin objectum, 1361) désigne une entité définie dans un espace à trois dimensions, qui a...) mais un emplacement. Il n'a donc aucune dimension (Dans le sens commun, la notion de dimension renvoie à la taille ; les dimensions d'une pièce sont sa longueur, sa largeur et sa profondeur/son épaisseur, ou bien son diamètre si c'est une pièce de...), longueur (La longueur d’un objet est la distance entre ses deux extrémités les plus éloignées. Lorsque l’objet est filiforme ou en forme de lacet, sa longueur est celle de l’objet complètement...), largeur (La largeur d’un objet représente sa dimension perpendiculaire à sa longueur, soit la mesure la plus étroite de sa face. En géométrie plane, la largeur est la plus petite des deux mesures d'un...), épaisseur, volume (Le volume, en sciences physiques ou mathématiques, est une grandeur qui mesure l'extension d'un objet ou d'une partie de l'espace.) ou aire. Sa seule caractéristique est sa position. On dit parfois qu'il est « infiniment petit ». Toutes les figures du plan et de l'espace sont constituées d'ensemble (En théorie des ensembles, un ensemble désigne intuitivement une collection d’objets (les éléments de l'ensemble), « une multitude qui peut être comprise comme un tout », comme...) de points.

Le point étant considéré comme l'unique élément commun à deux droites sécantes, on représente habituellement le point par une croix (intersection de deux petits segments) plutôt que par un point (signe).

Lorsque le plan ou l'espace est muni d'un repère cartésien, on peut positionner tout (Le tout compris comme ensemble de ce qui existe est souvent interprété comme le monde ou l'univers.) point par rapport aux axes de ce repère par ses coordonnées cartésiennes ; le point est alors associé à un couple de réels en dimension 2 ou un triplet de réels en dimension 3. Il existe cependant d'autres manières de repérer les points (coordonnées polaires en dimension deux, coordonnées sphériques ou coordonnées cylindriques en dimension 3)

En géométrie affine (En mathématiques, affine peut correspondre à :)

Dans un espace affine (Historiquement, la notion d’espace affine est issue du choc dû à la découverte de nouvelles géométries parfaitement...) E associé à l'espace vectoriel (En algèbre linéaire, un espace vectoriel est une structure algébrique permettant en pratique d'effectuer des combinaisons linéaires. Pour une introduction au concept de vecteur,...) V, les éléments de E sont appelés les points et les éléments de V sont appelés les vecteurs. À chaque couple de points (A,B), on associe un vecteur : \phi(A,B) = \vec u vérifiant les propriétés suivantes

  • La relation de Chasles : φ(A,B) + φ(B,C) = φ(A,C)
  • Si A est fixé, il y a correspondance (La correspondance est un échange de courrier généralement prolongé sur une longue période. Le terme désigne des échanges de...) bijective entre les points de l'espace affine E et les vecteurs de l'espace vectoriel V, c'est l'application qui, au point B, associe le vecteur (En mathématiques, un vecteur est un élément d'un espace vectoriel, ce qui permet d'effectuer des opérations d'addition et de multiplication par un scalaire. Un n-uplet peut constituer un exemple de vecteur, à condition qu'il...)φ(A,B).

En géométrie projective

En géométrie projective, les points de l'espace projectif E associé à l'espace vectoriel V sont les droites vectorielles de V. Lorsque l'espace vectoriel V est de dimension n, et qu'il lui est associé un espace affine A, il est fréquent d'associer à l'espace E deux ensembles de points : l'ensemble des points d'un sous-espace affine A' de dimension n-1 d'équation x = 1 (par exemple) et l'ensemble des droites vectorielles du sous-espace vectoriel V' associé à A' L'espace projectif E est alors assimilé à un espace affine A' auquel on ajoute les droites vectorielles de V' . On distingue alors, dans E, les points de type affine (ceux dans A') et les autres appelés points à l'infini (Le mot « infini » (-e, -s ; du latin finitus, « limité »), est un adjectif servant à qualifier...).

En particulier, si \mathbb K est un corps, l'espace projectif associé à \mathbb K^2 est assimilable au corps \mathbb K auquel s'ajoute un point à l'infini \infty\,.

Histoire

La notion de point, en mathématiques, a aujourd'hui un sens (SENS (Strategies for Engineered Negligible Senescence) est un projet scientifique qui a pour but l'extension radicale de l'espérance de vie humaine....) très large. Historiquement, les points étaient les « constituants » fondamentaux, les « atomes », dont étaient faits les droites, les plans et l'espace, tels que les concevaient les géomètres grecs de l'Antiquité. on disait ainsi qu'une droite, un plan ou l'espace tout entier étaient des ensembles de points.

Depuis la création de la théorie des ensembles par Georg Cantor (Georg Ferdinand Ludwig Philipp Cantor (3 mars 1845, Saint-Pétersbourg - 6 janvier 1918, Halle) est un mathématicien allemand connu pour être le créateur de la théorie des...) à la fin du XIXe siècle et l'explosion (Une explosion est la transformation rapide d'une matière en une autre matière ayant un volume plus grand, généralement sous forme de gaz. Plus...) des « structures mathématiques » qui s'en est suivie, on utilise le terme de « point » pour désigner un élément quelconque d'un ensemble que l'on décide arbitrairement d'appeler « espace » : c'est ainsi que l'on parlera d'un point de la droite des nombres réels ( alors que les Grecs faisaient évidemment la distinction entre un « point » et un « nombre » ), d'un point d'un espace métrique, d'un espace topologique (En mathématiques, les espaces topologiques permettent de définir dans un contexte très général des concepts comme la convergence, la continuité et la...), d'un espace projectif, etc.

Bref, il suffit qu'un mathématicien qualifie « d'espace » tel ou tel ensemble, au sens le plus général de ce terme et muni de propriétés particulières régies par des axiomes, pour que ses éléments soient aussitôt qualifiés de « points ».

Ainsi, aujourd'hui, le terme « d'espace » étant presque devenu synonyme « d'ensemble », le terme « point » est donc presque devenu synonyme « d'élément ». Ces termes « d'espace » et de « points » sont juste utilisés pour leur pouvoir suggestif, même si ces termes en question n'ont plus rien à voir avec la géométrie.

Source: Wikipédia publiée sous licence CC-BY-SA 3.0.

Vous pouvez soumettre une modification à cette définition sur cette page. La liste des auteurs de cet article est disponible ici.