Intégrales de Wallis - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs est disponible ici.

En analyse, les intégrales de Wallis constituent une famille d'intégrales introduites par John Wallis.

Définition, premières propriétés

On appelle habituellement intégrales de Wallis les termes de la suite réelle (W_n)_{\,n\, \in\, \mathbb{N}\,} définie par :

W_n = \int_0^{\frac{\pi}{2}} \sin^n(x)\,dx, ou de façon équivalente (par le changement de variable x = \frac{\pi}{2} - t):
W_n = \int_0^{\frac{\pi}{2}} \cos^n(x)\,dx

En particulier, les deux premiers termes de cette suite sont :

\quad W_0=\frac{\pi}{2}\qquad \, et \quad W_1=1\,

La suite \ (W_n) est décroissante, à termes strictement positifs. En effet, pour tout n \in\, \mathbb{N} :

  • \ W_n  width= 0" /> : c'est l'intégrale d'une fonction continue, positive, et non identiquement nulle sur l'intervalle d'intégration
  • W_{n} - W_{n + 1}= \int_0^{\frac{\pi}{2}} \sin^{n}(x)\,dx - \int_0^{\frac{\pi}{2}} \sin^{n + 1}(x)\,dx = \int_0^{\frac{\pi}{2}} \sin^{n}(x)\, [1 - \sin(x)]\,dx \geqslant 0
(par linéarité de l'intégrale et parce que la dernière intégrale est celle d'une fonction positive sur l'intervalle d'intégration)
Nota : décroissante et minorée (par 0), la suite \ (W_n) converge, et sa limite est positive ou nulle ; en fait, elle est nulle, comme cela résulte de l'équivalent obtenu plus loin.

Relation de récurrence, calcul des intégrales de Wallis

Une intégration par parties va permettre d'établir une relation de récurrence intéressante :

En remarquant que pour tout réel x, \quad \sin^2(x) = 1-\cos^2(x), on a pour tout entier naturel n :

\int_0^{\frac{\pi}{2}} \sin^{n+2}(x)\,dx = \int_0^{\frac{\pi}{2}} \sin^n(x) \left[1-\cos^2(x)\right]\,dx
\int_0^{\frac{\pi}{2}} \sin^{n+2}(x)\,dx = \int_0^{\frac{\pi}{2}} \sin^n(x)\,dx - \int_0^{\frac{\pi}{2}} \sin^n(x) \cos^2(x)\,dx (relation \mathbf{(1)})

On intègre alors par parties la seconde intégrale du second membre :

\int_0^{\frac{\pi}{2}} \sin^n(x) \cos^2(x)\,dx = \left[ \frac{1}{n+1} \sin^{n+1}(x) \cos(x)\right]_0^{\frac{\pi}{2}} + \int_0^{\frac{\pi}{2}} \ \frac{1}{n+1} \sin^{n+1}(x) \sin(x)\,dx

En reportant dans \mathbf{(1)}, on obtient alors:

W_{n+2}=W_n - {1\over {n+1}}\,W_{n+2}
d'où \quad (n+2)\,W_{n+2}=(n+1)\,W_n (relation \mathbf{(2)})

Ceci se traduit par la relation bien connue :

n\,W_n = (n-1)\,W_{n-2}\qquad \, valable pour n \geqslant 2\qquad \,. On a là une relation de récurrence donnant Wn en fonction de Wn − 2, ie le n-ième terme de la suite en fonction de celui qui le précède de deux rangs.

De cette relation et des valeurs de W0 et W1, on tire une expression des termes de la suite, selon la parité de leur rang. Ainsi :

  • pour \quad n=2\,p, \quad W_{2\,p}=\frac{2\,p-1}{2\,p}\,\frac{2\,p-3}{2\,p-2}\cdots\frac{1}{2}\,W_0=\frac{(2\,p)!}{2^{2\,p}\, (p!)^2} \frac{\pi}{2}
  • pour \quad n=2\,p+1, \quad W_{2\,p+1}=\frac{2\,p}{2\,p+1}\,\frac{2\,p-2}{2\,p-1}\cdots\frac{2}{3}\,W_1=\frac{2^{2\,p}\, (p!)^2}{(2\,p +1)!}

On remarque que les termes de rang pair sont irrationnels, tandis que ceux de rang impair sont rationnels.

Un équivalent de la suite des intégrales de Wallis

  • De la formule de récurrence précédente \mathbf{(2)}, on déduit d'abord que :
\ W_{n + 1} \sim W_n (équivalence de deux suites).
En effet, pour tout n \in\, \mathbb{N} :
\ W_{n + 2} \leqslant W_{n + 1} \leqslant W_n (la suite étant décroissante) donc :
\frac{W_{n + 2}}{W_n} \leqslant \frac{W_{n + 1}}{W_n} \leqslant 1 (puisque \ W_n  width= 0" />), ce qui s'écrit :
\frac{n + 1}{n + 2} \leqslant \frac{W_{n + 1}}{W_n} \leqslant 1 (d'après la relation \mathbf{(2)}).
Par encadrement, on conclut que \frac{W_{n + 1}}{W_n} \to 1, soit \ W_{n + 1} \sim W_n.
  • Puis on établit l'équivalence suivante :
W_n \sim \sqrt{\frac{\pi}{2\, n}}\quad ( soit encore \quad\lim_{n \rightarrow \infty} \sqrt n\,W_n=\sqrt{\pi /2}\quad ).


Application à la formule de Stirling

On suppose connue l'équivalence suivante (établie dans l'article sur la formule de Stirling):

\ n\,! \sim C\, \sqrt{n}\left(\frac{n}{\mathrm{e}}\right)^n, où \ C \in \R^*.

On se propose maintenant de déterminer la constante \ C à l'aide d'équivalents de W_{2\, p}.

  • Du paragraphe précédent résulte l'équivalence :
W_{2\, p} \sim \sqrt{\frac{\pi}{4\, p}} = \frac{\sqrt{\pi}}{2}\, \frac{1}{\sqrt{p}} (relation \mathbf{(3)})
  • Par ailleurs, en utilisant l'équivalent de la factorielle donné supra :
W_{2\,p}=\frac{(2\,p)!}{2^{2\,p}\, (p\,!)^2}\, \frac{\pi}{2} \sim \frac{C\, \left(\frac{2\, p}{\mathrm{e}}\right)^{2p}\, \sqrt{2\, p}}{2^{2p}\, C^2\,  \left(\frac{p}{\mathrm{e}}\right)^{2p}\, \left(\sqrt{p}\right)^2}\, \frac{\pi}{2}, soit :
W_{2\,p} \sim \frac{\pi}{C\, \sqrt{2}}\, \frac{1}{\sqrt{p}} (relation \mathbf{(4)})
Des équivalences \mathbf{(3)} et \mathbf{(4)}, on déduit par transitivité :
\frac{\pi}{C\, \sqrt{2}}\, \frac{1}{\sqrt{p}} \sim \frac{\sqrt{\pi}}{2}\, \frac{1}{\sqrt{p}}, d'où :
\frac{\pi}{C\, \sqrt{2}} = \frac{\sqrt{\pi}}{2}, et enfin C = \sqrt{2\, \pi}.
On a ainsi établi la formule de Stirling dans sa version définitive :
\ n\,! \sim \sqrt{2\, \pi\, n}\, \left(\frac{n}{\mathrm{e}}\right)^n.

Application au calcul de l'intégrale de Gauss

On peut aisément utiliser les intégrales de Wallis pour calculer l'intégrale de Gauss.

Vérifions d'abord les inégalités suivantes:

  • \forall n\in \mathbb N^* \quad \forall u\in\mathbb R_+ \quad u\leqslant n\quad\Rightarrow\quad (1-u/n)^n\leqslant e^{-u}
  • \forall n\in \mathbb N^* \quad \forall u \in\mathbb R_+ \qquad e^{-u} \leqslant  (1+u/n)^{-n}

En effet en posant \quad u/n=t la première inégalité (pour laquelle t \in [0,1]) équivaut à 1-t\leqslant e^{-t}. Quant à la seconde elle s'écrit e^{-t}\leqslant (1+t)^{-1}, ce qui revient à e^t\geqslant 1+t. Ces 2 inégalités sont des conséquences immédiates de la convexité de la fonction exponentielle (ou si l'on préfère de l'étude de la fonction t \mapsto e^t -1 -t).

Posant alors u = x2 et utilisant les propriété élémentaires des intégrales ("impropres") (la convergence des intégrales est immédiate) on obtient l'encadrement:

\int_0^{\sqrt n}(1-x^2/n)^n dx \leqslant \int_0^{\sqrt n} e^{-x^2} dx \leqslant \int_0^{+\infty} e^{-x^2} dx \leqslant \int_0^{+\infty} (1+x^2/n)^{-n} dx.

Or les intégrales d'encadrement se ramènent facilement à des intégrales de Wallis. Pour celle de gauche il suffit de poser x=\sqrt n\, \sin\,t (t variant de 0 à π / 2) et elle s'écrit \sqrt n \,W_{2n+1}. Quant à celle de droite, on peut poser x=\sqrt n\, \tan\,  t (t variant de 0 à π / 2) qui donne \sqrt n \,W_{2n-2}.

Comme on a vu que \lim_{n\rightarrow +\infty} \sqrt n\;W_n=\sqrt{\pi /2}, on en déduit que \int_0^{+\infty} e^{-x^2} dx = \sqrt{\pi} /2.

Remarque: Il existe bien d'autres méthodes de calcul de l'intégrale de Gauss, dont une méthode bien plus directe.

Nota

Les mêmes propriétés conduisent au produit de Wallis, qui exprime \frac{\pi}{2}\, (voir π) sous forme d'un produit infini.

Page générée en 0.028 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise