Recherchez sur tout Techno-Science.net
       
Techno-Science.net : Suivez l'actualité des sciences et des technologies, découvrez, commentez
Catégories
Techniques
Sciences
Encore plus...
Techno-Science.net
Partenaires
Organismes
 CEA
 ESA
Sites Web
Photo Mystérieuse

Que représente
cette image ?
 A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | +
Fraction (mathématiques)
image:icone_math_élém.jpg
Cet article fait partie de la série
Mathématiques élémentaires
Algèbre
Analyse
Arithmétique
Géométrie
Logique (La logique (du grec logikê, dérivé de logos (λόγος), terme inventé par Xénocrate signifiant à la fois raison, langage, et raisonnement) est dans une première approche...)
Probabilité (La probabilité (du latin probabilitas) est une évaluation du caractère probable d'un évènement. En mathématiques, l'étude des probabilités est un sujet de...)
Statistique (Une statistique est, au premier abord, un nombre calculé à propos d'un échantillon. D'une façon générale, c'est le résultat de...)

Sens (SENS (Strategies for Engineered Negligible Senescence) est un projet scientifique qui a pour but l'extension radicale de l'espérance de vie humaine. Par une évolution progressive allant du ralentissement du vieillissement,...) usuel de la fraction

Définition (Une définition est un discours qui dit ce qu'est une chose ou ce que signifie un nom. D'où la division entre les définitions réelles et les définitions nominales.) de la fraction

Une fraction est une division (La division est une loi de composition qui à deux nombres associe le produit du premier par l'inverse du second. Si un nombre est non nul, la fonction "division par ce nombre" est la réciproque de la fonction "multiplication par ce...) non effectuée entre deux nombres entiers relatifs n et d. Elle est représentée comme suit :

n/d ou nd ou \frac{n}{d}

Le nombre (La notion de nombre en linguistique est traitée à l’article « Nombre grammatical ».) du haut s'appelle le numérateur............ n
Le nombre du bas s'appelle le dénominateur......... d
Le trait ou barre de fraction signifie que l'on divise le numérateur par le dénominateur.

Exemple : 3/7 signifie que l'on divise 3 par 7; on prononce cette fraction " trois septièmes " et c'est pour cela que 3 est le numérateur parce qu'il indique un nombre de trois unités (les septièmes) alors que 7 est le dénominateur parce qu'il dénomme l'unité (le septième) avec laquelle on travaille.Si on mange les 3/7 d'une tarte, le numérateur 3 indique le nombre de parts que l'on mange alors que 7 indique le nombre total ( Total est la qualité de ce qui est complet, sans exception. D'un point de vue comptable, un total est le résultat d'une addition, c'est-à-dire une somme. Exemple : "Le total...) de parts, donc l'unité considérée...

On trouve aussi parfois la notation

n : d

ou encore

n ÷ d

les deux points remplaçant la barre de fraction (cette notation est à éviter).

Dessiner une fraction

Fractions dont n < d

La fraction peut être représentée par un dessin. Bien souvent une forme géométrique que l'on divise en plusieurs parties.
1° Le dénominateur d indique le nombre de parties égales à dessiner dans la forme géométrique.
2° Le numérateur n indique le nombre de parties égales utilisées.
Exemple :
Choisissons un rectangle comme forme géométique et la fraction 34
Le dénominateur est 4 donc le rectangle sera divisé en 4 parties égales

       
       

Le numérateur est 3 donc seules 3 parties égales seront utilisées.

       
       

Autre possibilté : Image:fraction3_4.svg

Fractions dont n > d

Cette fraction sera équivalente au quotient de n/d, (qui représentera le nombre d'unité) suivi d'une fraction constituée par le reste de la division pour numérateur et d pour dénominateur.

Exemple : pour la fraction 7/3, la division entière donne 2, il reste 1.
Le quotient est 2 donc 2 unités, le reste 1 donc 2 ?.

Il est impossible de représenter ce genre de fraction par un schéma unique, nous utiliserons dès lors plusieurs formes géométrique similaires: Image:Fraction7_3.svg

Prendre une fraction d'une quantité (La quantité est un terme générique de la métrologie (compte, montant) ; un scalaire, vecteur, nombre d’objets ou d’une autre manière de dénommer la valeur d’une collection ou un...)

Pour prendre les 23 de 750, on divise 750 par 3, puis on multiplie le résultat par 2:

750÷3 = 250 ; 250 × 2 = 500. Donc 23 de 750 = 500

Prendre ab de c revient à diviser c par b et à multiplier le tout (Le tout compris comme ensemble de ce qui existe est souvent interprété comme le monde ou l'univers.) par a.

Fractions équivalentes

Si on multiplie, ou divise, le numérateur et le dénominateur d'une fraction par un même nombre, on obtient une fraction équivalente.

Exemple : Image:fraction2_3.svg

De manière générale, les fractions nd et n'd' sont équivalentes dès que n × d' = d × n'.

Exemple : Image:fraction6_9.svg

\frac{4}{6}=\frac{6}{9} car 6 \times 6 = 4 \times 9\, (on appelle ces deux produits les produits en croix).

Certaines fractions peuvent être simplifiées, c'est-à-dire que n et d peuvent être divisés par un même nombre mais le plus grand possible. Ce nombre s'appelle le PGCD (plus grand commun diviseur) de n et d. Après réduction, la fraction est dite irréductible.

Pour effectuer certaines opérations entre fractions, tous les dénominateurs des fractions doivent être égaux. Pour ce faire, il faut remplacer chaque fraction par une fraction équivalente, en s'arrangeant pour que tous les dénominateurs soient identiques. Ce dénominateur sera le plus petit nombre possible qui soit divisible par chaque dénominateur. Ce nombre s'appelle le PPCM (plus petit commun multiple) des dénominateurs. L'opération s'appelle réduire au même dénominateur
Exemple :

\frac{3}{4}=\frac{3 \times 3\times 3\times 5}{4 \times 3\times 3\times 5}= \frac{135}{180}
\frac{1}{6}=\frac{1 \times 2\times 3\times 5}{6 \times 2\times 3\times 5}= \frac{30}{180}
\frac{5}{9}=\frac{5 \times 2\times 2\times 5}{9 \times 2\times 2\times 5}= \frac{100}{180}
\frac{14}{15}=\frac{14 \times 2\times 2\times 3}{15 \times 2\times 2\times 3}= \frac{168}{180}

Comparaison de fractions

  • Pour un même numérateur, plus le dénominateur est petit plus la fraction est grande.
Exemple : Image:fraction_comp1.svg
\frac{2}{3} > \frac{2}{5}
Le numérateur 2 est le même pour chaque fraction.
La comparaison des dénominateurs donne 3 < 5
  • Pour un même dénominateur, plus le numérateur est grand, plus la fraction est grande :
Exemple : Image:fraction_comp2.svg
\frac{2}{7} < \frac{5}{7}
Le dénominateur 7 est le même pour chaque fraction.
La comparaison des dénominateurs donne 2 < 5
  • Si les numérateurs et les dénominateurs sont différents, on peut toujours réduire les fractions au même dénominateur et comparer alors les numérateurs : Comparaison de 1/4 et 2/5
1/4 =5/20 et 2/5 = 8/20. Or 5 < 8 donc 5/20 < 8/20 donc 1/4 < 2/5

rem: On peut aussi utiliser l'écriture décimale:

1/4 = 0,25 et 2/5 = 0,4.

0,25 < 0,4 donc 14 < 25

Ecriture décimale, écriture fractionnaire

Toute fraction possède un développement décimal (En mathématiques, le développement décimal est une façon d'écrire des nombres réels positifs à l'aide des puissances de 10 (négatives ou positives). Lorsque les nombres sont des entiers naturels, le développement décimal...) fini ou illimité périodique qui s'obtient en posant la division de n par d.

1/4 = 0,25
2/3 = 0,666...(période 6)
17/7 = 2,428571428571...(période 428571)

Inversement, tout nombre décimal ou possédant un développement décimal périodique peut s'écrire sous forme de fraction.

Cas du nombre décimal

Il suffit de prendre comme numérateur le nombre décimal privé de sa virgule et comme dénominateur 10n où n est le nombre de chiffres après la virgule:

0,256 = \frac{256}{1000}=\frac{32}{125}
15,16 = \frac{1516}{100}=\frac{379}{25}

Cas du développement décimal illimité

On commence par se débarrasser de la partie entière (En mathématiques, la fonction partie entière est la fonction définie de la manière suivante :): 3,4545... = 3 + 0,4545...

cas du développement décimal périodique simple

Un nombre périodique simple est un nombre décimal dans lequel la période commence immédiatement après la virgule.
0,666 ou 0,4545 ou 0,108108
Comme numérateur, il suffit d'utiliser la période tandis que le dénominateur sera composé d'autant de 9 qu'il y a de chiffres composant la période.
Exemple : 0,4545
Période 45 donc numérateur = 45
Période composée de deux chiffres donc dénominateur = 99
Fraction = 45/99 ou 5/11

par conséquent: 3,4545... = 3 + 5/11 = 38/11

Cas du développement décimal périodique mixte

Un nombre décimal périodique mixte est un nombre décimal dans lequel la période ne commence pas immédiatement après la virgule.
0,8333 ou 0,14666
Pour trouver le numérateur de la fraction, il faut soustraire la valeur mixte de la valeur mixte suivie de la première période. Exemple : 0,36981981...
valeur mixte : 36
Valeur mixte suivie de la première période : 36981
Numérateur = 36981 - 36 = 36945
Quant au dénominateur, il sera composé d'autant de 9 qu'il y a de chiffres composant la période, suivis d'autant de zéros qu'il y a de chiffres après la virgule composant la valeur mixte.

Exemple 1 : dans la valeur 0,36981981, la période 981 est constituée de 3 chiffres donc le dénominateur sera constitué d'une série de trois 9 suivis de deux zéros puisque la valeur mixte 36 est composée de deux chiffres. Finalement nous aurons :
0,36981981 = 36945/99900 ou 821/2220

Exemple 2 : 1,24545...= \frac{1245-12}{990}=137/110

Opérations sur les fractions

Addition (L'addition est une opération élémentaire, permettant notamment de décrire la réunion de quantités ou l'adjonction de grandeurs extensives de...) et soustraction (La soustraction est l'une des opérations basiques de l'arithmétique. La soustraction combine deux ou plusieurs grandeurs du même type, appelées opérandes, pour donner un seul nombre, appelé la différence.)

Pour un dénominateur commun

Il suffit d'additionner ou de soustraire le numérateur de chaque fraction et de conserver le dénominateur commun.

Exemple d'une somme :

Image:Fraction_sum1.svg
Image:fraction_sum2.svg

Exemple d'une différence :

Image:Fraction_diff.svg

Pour un dénominateur différent

Avant d'effectuer l'opération, chaque fraction doit être transformée en une fraction équivalente dont le dénominateur leur soit commun.
Exemple : Image:fraction_sum3.svg

A = \frac{1}{6} + \frac{4}{9}
A = \frac{3}{18} + \frac{8}{18}
A = \frac{11}{18}

Multiplication (La multiplication est l'une des quatre opérations de l'arithmétique élémentaire avec l'addition, la soustraction et la division .)

La multiplication de deux fractions est simple à effectuer mais il n'est pas simple de comprendre pourquoi elle fonctionne ainsi.

\frac {2}{15} \times \frac {7} {11} = \frac {2 \times 7} {15 \times 11} = \frac {14} {165}

En voici une explication, basée sur une compréhension intuitive des fractions.

On peut comprendre sept onzièmes comme sept fois un onzième (voir les représentations graphiques ci-dessus) soit \frac {7} {11} comme {7} \times \frac {1}{11}. Ainsi multiplier \frac {2}{15} par \frac {7} {11} revient à effectuer \frac {2}{15} \times 7 \times \frac {1} {11} = \frac {2 \times 7}{15} \times \frac {1}{11}.
Mais multiplier par un onzième revient à diviser par 11, c'est-à-dire à multiplier le dénominateur par 11 (les parts sont 11 fois plus petites), soit \frac {2 \times 7} {15 \times 11}.

Division

L'inverse (En mathématiques, l'inverse d'un élément x d'un ensemble muni d'une loi de composition interne · notée multiplicativement, est un élément y tel que x·y = y·x = 1, si 1...) de la fraction \frac nd (pour n non nul) est la fraction \frac dn. L'inverse de \frac 23 est \frac 32.

Diviser par une fraction c'est multiplier par son inverse :

\frac{\frac 56}{\frac 23} = \frac 56 \times \frac 32 = \frac {15}{12} = \frac 54

Petits Problèmes

Problèmes historiques

  1. J’ai trouvé une pierre mais je ne l’ai pas pesée. Après lui avoir ajouté un septième de son poids (Le poids est la force de pesanteur, d'origine gravitationnelle et inertielle, exercée par la Terre sur un corps massique en raison uniquement du voisinage de la Terre. Elle est égale à l'opposé de la résultante des...) et avoir ajouté un onzième du résultat, j’ai pesé le tout et j’ai trouvé : 1 ma-na [unité de masse (Le terme masse est utilisé pour désigner deux grandeurs attachées à un corps : l'une quantifie l'inertie du corps (la masse inerte) et l'autre la contribution du corps à la force de...)]. Quel était à l’origine le poids de la pierre?? (problème babylonien, tablette YBC 4652, problème 7)
  2. Un nombre augmenté de son septième donne 19. Quel est ce nombre ? (papyrus Rhind, problème 24)
  3. Un nombre augmenté de son quart donne 15. Quel est ce nombre?? (papyrus Rhind, problème 26)
  4. Supposons que l’on ait 9 tiges d’or jaune (Il existe (au minimum) cinq définitions du jaune qui désignent à peu près la même couleur :) et 11 tiges d’argent (L’argent ou argent métal est un élément chimique de symbole Ag — du latin Argentum — et de numéro atomique 47.) blanc (Le blanc est la couleur d'un corps chauffé à environ 5 000 °C (voir l'article Corps noir). C'est la sensation visuelle obtenue avec un spectre lumineux continu, d'où...) qui, à la pesée, ont des poids tout justes égaux. Si l’on échange entre elles une de leurs tiges, l’or devient plus léger de 13 liang [unité de masse]. On demande combienpèsent respectivement une tige (La tige est chez les plantes à fleurs, l'axe, généralement aérien, qui prolonge la racine et porte les bourgeons et les feuilles. La tige se ramifie généralement en branches et rameaux formant l'appareil caulinaire.) d’or et une tige d’argent. (les Les neuf chapitres sur l'art mathématique (Les mathématiques constituent un domaine de connaissances abstraites construites à l'aide de raisonnements logiques sur des concepts tels que les...), problème 7.17)
  5. Une lance a la moitié et le tiers dans l’eau (L’eau est un composé chimique ubiquitaire sur la Terre, essentiel pour tous les organismes vivants connus.) et neuf paumes à l’extérieur. Je te demande combien elle a de long. (problème médiéval)
Source: Wikipédia publiée sous licence CC-BY-SA 3.0.

Vous pouvez soumettre une modification à cette définition sur cette page. La liste des auteurs de cet article est disponible ici.