Recherchez sur tout Techno-Science.net
       
Techno-Science.net : Suivez l'actualité des sciences et des technologies, découvrez, commentez
Catégories
Techniques
Sciences
Encore plus...
Techno-Science.net
Partenaires
Organismes
 CEA
 ESA
Sites Web
Photo Mystérieuse

Que représente
cette image ?
 A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | +
Définition

Une définition est un discours qui dit ce qu'est une chose ou ce que signifie un nom. D'où la division entre les définitions réelles et les définitions nominales.

Une définition pose une équivalence entre un terme (signifiant) et un sens (SENS (Strategies for Engineered Negligible Senescence) est un projet scientifique qui a pour but l'extension radicale de l'espérance de vie humaine. Par une évolution progressive...) (signifié). Elle autorise à remplacer le second par le premier et revêt ainsi une utilité pratique. Elle est également le résultat d'une opération, et introduit donc le temps (le sens défini est fini, passé, en-soi), ainsi qu'un acteur (Un acteur est un artiste qui incarne un personnage dans un film, dans une pièce de théâtre, à la télévision, à la radio, ou même dans des spectacles de rue. En plus de l'interprétation proprement dite, un...) (souvent implicite).

La définition (Une définition est un discours qui dit ce qu'est une chose ou ce que signifie un nom. D'où la division entre les définitions réelles et les définitions nominales.) s'inscrit dans l'ordre de la dénotation, mais un terme connote également des sens, et ce sans faire explicitement appel au temps ou à un acteur. Il le fait grâce à une structure externe de l'espace des signifiants, mais il existe également une structure interne (En France, ce nom désigne un médecin, un pharmacien ou un chirurgien-dentiste, à la fois en activité et en formation à l'hôpital ou en...) qui s'exprime à travers l'étymologie.

On le voit, le concept de définition ne s'impose pas de lui-même : il s'inscrit dans une totalité structurée. Il implique et il indique des choix : quels usages (parmi d'autres) sert la nouvelle définition ? quels acteurs sert-elle ? C'est un outil (Un outil est un objet finalisé utilisé par un être vivant dans le but d'augmenter son efficacité naturelle dans l'action. Cette augmentation se traduit par la simplification des actions entreprises, par une plus...) utile, mais pas indifférent.

La définition établit une frontière (Une frontière est une ligne imaginaire séparant deux territoires, en particulier deux États souverains. Le rôle que joue une frontière peut fortement varier suivant les régions et...) entre le mot défini, et les mots utilisés pour l'expliciter. Elle établit ainsi une structure ordonnée, une arborescence par niveaux entre des classes de mots. On voit bien que cette structure est pourtant locale, que cet ordre ne se conserve pas si on déroule la structure de proche en proche. Cet ordre, bien utile, n'est qu'une illusion.

Définir la définition : une problématique

Une définition est la détermination des limites de l'extension d'un concept (définition de Lalande, dans son dictionnaire critique). Plus profondément, la définition expose en un discours articulé (composé minimalement de deux mots) la compréhension d'un concept. Dire qu'un animal est un vivant doué de connaissance sensible, par exemple, c'est articuler entre elles deux notions (vivant et doué de connaissance sensible) qui entrent dans la constitution et qui permettent de saisir la nature d'une troisième (animal).

Il y a évidemment un cercle (Un cercle est une courbe plane fermée constituée des points situés à égale distance d'un point nommé centre. La valeur de cette distance est appelée rayon du cercle. Celui-ci étant infiniment...) à définir le concept de définition : la tentative même suppose le problème résolu, et semble nier l'intérêt de la démarche (pourquoi définir définition si par là-même on suppose la définition connue ?). C'est ce que la philosophie anglo-saxone appelle un point (Graphie) aveugle de la raison.

Ainsi la définition proposée ci-dessus du mot définition emploie elle-même d'autres mots, dont on suppose qu'ils ont eux-mêmes une définition. Mais le problème est d'abord celui du sens : comment peut-on appréhender le sens des mots ? La réponse varie considérablement d'un auteur à l'autre. Par exemple, pour Platon, le sens est immuable, et il sert de fondement à notre connaissance ; pour Quine (Quine désigne le fait d'avoir une ligne dans ce même jeu.), en revanche, le sens est indéterminé, et dépend toujours d'un ensemble (En théorie des ensembles, un ensemble désigne intuitivement une collection d’objets (les éléments de l'ensemble), « une multitude qui peut...) de théories et de concepts.

Le problème concerne ainsi la théorie (Le mot théorie vient du mot grec theorein, qui signifie « contempler, observer, examiner ». Dans le langage courant, une théorie est une idée ou une...) de la connaissance et de la référence.

Dans l'exemple cité (La cité (latin civitas) est un mot désignant, dans l’Antiquité avant la création des États, un groupe d’hommes...), l'auteur subordonne la définition au concept, à son extension et à sa détermination. Le paradoxe (Un paradoxe est une proposition qui contient ou semble contenir une contradiction logique, ou un raisonnement qui, bien que sans faille apparente, aboutit à une absurdité, ou encore, une situation qui contredit l'intuition commune. Le...) créé, demandera-t-on, n'est-il pas un mouvement dialectique de la pensée ? Sans doute, si cette pensée est action, et revendiquée en tant que telle, mais non pas si elle est résultat. Une vérité immanente qui contiendrait des paradoxes n'est qu'une négation de la raison, une base pour le réenchantement du monde que dénonce Max Weber. Mais une dénonciation s'appuie sans doute elle-même sur une vérité immanente, à moins de prétendre à une perspective transcendante. On peut alors en venir à une forme de relativisme (cf. scepticisme ou post-modernisme), à défaut de trouver une rationalité minimale qui nous assure que les mots que nous utilisons ont un sens et donc une définition.

La question est de savoir pour quel sens du mot " définition " un discours est sensé.

Conceptions de la définition

L'inventeur de la définition serait, selon Aristote, Socrate. Socrate cherche en effet ce qui fait qu'une chose est telle qu'elle est : par exemple, dans l’Hippias majeur, pourquoi cette chose belle est-elle belle ? Il y aurait ainsi un caractère commun aux choses belles, une essence, dont la formulation (La formulation est une activité industrielle consistant à fabriquer des produits homogènes, stables et possédant des propriétés spécifiques, en mélangeant...) est la définition.

Cependant, le point de départ de Socrate est existentiel : il s'agit de prendre conscience de ce que nous disons et de ce que nous faisons quand nous suivons des conceptions morales ou scientifiques. La définition permet de mettre à l'épreuve notre prétendu savoir, surtout quand Socrate montre à ses interlocuteurs qu'ils ne savent pas produire une définition cohérente de ce qu'ils pensent : ils ne pensent donc rien de défini, rien qui n'ait une extension précise et bien déterminée. Dans le meilleur des cas, ce sont des ignorants, dans le pire des imposteurs.

Les problèmes liés à la définition (en particulier le problème du paradoxe donné plus haut) ont été des motivations dans la recherche (La recherche scientifique désigne en premier lieu l’ensemble des actions entreprises en vue de produire et de développer les connaissances scientifiques. Par extension métonymique, la recherche...) pour tous les philosophes. En effet, l'analyse des concepts et de ce que l'on veut dire, la recherche de l'extension des concepts que nous utilisons, est l'un des aspects majeurs de la philosophie, de Platon et Aristote à Locke, Hume et toute la philosophie anglo-saxonne notamment.

Logique (La logique (du grec logikê, dérivé de logos (λόγος), terme inventé par Xénocrate signifiant à la fois raison, langage, et raisonnement) est dans...)

En logique, une définition est un énoncé qui introduit un symbole appelé terme dénotant le même objet (De manière générale, le mot objet (du latin objectum, 1361) désigne une entité définie dans un espace à trois dimensions, qui a une fonction précise, et qui peut être...) qu’un autre symbole, ou associé à une suite appelée assemblage, de symboles dont la signification est déjà connue.

Certains symboles comme ceux de l'existence, l'appartenance, la négation etc. qui ne peuvent être définis, sont grossièrement introduits en faisant appel à des mots du langage naturel (Un langage naturel est une langue « normale » parlée par un être humain.) et à l’idée intuitive que l’homme (Un homme est un individu de sexe masculin adulte de l'espèce appelée Homme moderne (Homo sapiens) ou plus simplement « Homme ». Par distinction, l'homme prépubère est appelé un...) peut en avoir. Ces termes primitifs appartiennent au " domaine intuitif de base ". (Concept des mots non définis utilisé par Alfred Korzybski)

En mathématiques, une définition est un énoncé écrit en langage naturel ou en langage formel (Dans de nombreux contextes (scientifique, légal, etc.) l'on désigne par langage formel un mode d'expression plus formalisé et plus précis (les deux n'allant pas nécessairement de pair) que le langage de tous les...) (de la logique), qui introduit un nouveau mot ou symbole associé à un objet abstrait décrit par un assemblage d’autres mots ou symboles dont le sens a déjà été précisé.
L’idée que nous avons de l’objet ainsi défini, s’appelle une notion mathématique (Les mathématiques constituent un domaine de connaissances abstraites construites à l'aide de raisonnements logiques sur des concepts tels que les nombres, les figures, les structures et les transformations. Les...).

Ces mots ou symboles sont des " abréviations ", destinées à représenter de tels assemblages de lettres et de symboles. Ces abréviations permettent à un mathématicien d’utiliser l’objet mathématique ainsi construit sans avoir à l’esprit sa définition complète et détaillée. Dans la pratique, les abréviations sont des lettres alphabétiques, des signes ou des mots ordinaires, par exemple :

  • π représente un nombre (La notion de nombre en linguistique est traitée à l’article « Nombre grammatical ».)
  • e représente l’exponentielle (La fonction exponentielle est l'une des applications les plus importantes en analyse, ou plus généralement en mathématiques et dans ses domaines d'applications....) de 1
  • " point " et " droite " sont des objets géométriques
  • les signes + et × sont des " lois "

Il serait possible d’écrire toutes les mathématiques uniquement en langage formel, mais cela rendrait leur utilisation difficile et d’après Roger Godement, un nombre aussi simple que 1 nécessiterait un assemblage d’environ dix mille symboles.

Donnons maintenant quelques exemples de définitions :

  • Soit A un nombre entier positif. Posons B=A.

Nous définissons B comme étant le même nombre représenté par A.

  • Soit D et D’ deux droites non parallèles. Soit I le point d’intersection de D et D’.

Nous définissons le point I et nous sommes supposés connaître ce que sont une droite, le parallélisme et un point d’intersection.

  • Un nombre entier naturel est dit premier s'il est différent de 1 et s’il n’admet comme diviseurs que 1 et lui-même.

Quelques remarques :

Une définition n’est pas un théorème (Un théorème est une proposition qui peut être mathématiquement démontrée, c'est-à-dire une assertion qui peut être établie comme vraie au travers d'un raisonnement logique construit à partir d'axiomes. Un théorème est à...), elle donne simplement une dénomination à des objets mathématiques mais ne décrit pas de règles d’utilisation de ces objets ou de propriétés vérifiées par ces objets (autres que celles qui le définissent).

Lorsque nous définissons un objet, nous utilisons en général un " si " qui signifie " si par définition ", " quand " ou " lorsque ", comme dans la définition suivante :

Un nombre entier relatif n est pair si ∃k ∈ ?, n = 2k.

Certains utilisent maladroitement un " si et seulement si " à la place du " si ", mais cela n’a pas de sens, puisqu’ils écrivent dans ce cas une équivalence entre un terme qui n’est pas une proposition qui, de plus, n’est pas encore défini et une proposition.

Si la définition d’un objet donné suppose qu’une proposition P soit vérifiée, alors l’affirmation " par définition " ou " en vertu de la définition " la proposition P est vérifiée signifie que nous utilisons la proposition P intrinsèque à l’objet. Considérons la définition suivante :

Définition : Un carré (Un carré est un polygone régulier à quatre côtés. Cela signifie que ses quatre côtés ont la même longueur et ses quatre...) est un quadrilatère (En géométrie plane, un quadrilatère est un polygone à 4 côtés.) dont les côtés sont de même longueur (La longueur d’un objet est la distance entre ses deux extrémités les plus éloignées. Lorsque l’objet est filiforme ou en forme de lacet, sa longueur est celle de l’objet complètement...) et dont les angles sont droits.
Il est évident que tous les côtés d’un carré sont de longueur égale parce que cette propriété fait partie de la définition. Nous pouvons dire dans ce cas " par définition ", un carré a tous ses côtés d’égale longueur.

Si un même objet mathématique (ou " être mathématique ") reçoit plusieurs définitions et que toutes les propriétés de l’une d’entre elles sont équivalentes à celles des autres, alors ces définitions sont dites équivalentes.

Une définition n’a de sens que dans le cadre d’une théorie mathématique donnée (Dans les technologies de l'information, une donnée est une description élémentaire, souvent codée, d'une chose, d'une transaction, d'un événement, etc.) et par exemple il est impossible de considérer une fonction dérivable définie sur l’ensemble des entiers naturels à valeurs dans ?.

Dans un exposé mathématique, il arrive qu’une définition " intuitive " soit donnée avant la définition mathématique ; son rôle est de mettre en évidence les motivations d’une telle définition.

Bibliographie

  • Parménide, Platon
  • Philèbe, Platon
  • La Métaphysique, Aristote
  • Somme logique, Guillaume (Guillaume est un prénom masculin d'origine germanique. Le nom vient de Wille, volonté et Helm, heaume, casque, protection.) d'Ockham
  • Essais sur l'entendement humain, Locke
  • Critique de la raison pure, Kant
  • Essais philosophiques, John Langshaw Austin
  • Le Mot et la Chose, Quine
  • La définition, Centre d'Etudes du lexique, Larousse, 1990 (ISBN 2-03-760051-8)
Source: Wikipédia publiée sous licence CC-BY-SA 3.0.

Vous pouvez soumettre une modification à cette définition sur cette page. La liste des auteurs de cet article est disponible ici.