Recherchez sur tout Techno-Science.net
       
Techno-Science.net : Suivez l'actualité des sciences et des technologies, découvrez, commentez
Catégories
Techniques
Sciences
Encore plus...
Techno-Science.net
Bons plans et avis Gearbest: Xiaomi Mi Mix2, OnePlus 5T
Code promo Gearbest: réduction, coupon, livraison...
Photo Mystérieuse

Que représente
cette image ?
Posté par Adrien le Mercredi 09/05/2012 à 00:00
Un pas de plus vers la maîtrise de la fusion nucléaire ?
Deux physiciens aux USA ont récemment découvert une explication possible à l'un des problèmes majeurs qui empêche le développement de la fusion nucléaire. Ils proposent une solution qui, si validée expérimentalement, devrait permettre de nets progrès de performance au sein (Le sein (du latin sinus, « courbure, sinuosité, pli ») ou la poitrine dans son ensemble, constitue la région ventrale supérieure du torse d'un animal, et...) des tokamaks. Voilà de quoi encourager nos espoirs de maîtriser cette nouvelle technologie (Le mot technologie possède deux acceptions de fait :) afin de l'utiliser industriellement pour la production d'électricité.

En effet, à l'heure (L’heure est une unité de mesure du temps. Le mot désigne aussi la grandeur elle-même, l'instant (l'« heure qu'il est »), y compris en sciences...) où l'avenir énergétique de la planète est au coeur des préoccupations, la fusion (En physique et en métallurgie, la fusion est le passage d'un corps de l'état solide vers l'état liquide. Pour un corps pur, c’est-à-dire pour...) nucléaire constituerait une source d'énergie idéale car abondante et peu polluante. Cependant, les conditions strictes permettant la fusion sont difficiles à mettre en oeuvre si bien que la technologie en est encore au stade (Un stade (du grec ancien στ?διον stadion, du verbe ?στημι istêmi, « se tenir droit et ferme ») est un équipement sportif.) de la recherche (La recherche scientifique désigne en premier lieu l’ensemble des actions entreprises en vue de produire et de développer les connaissances...) et de l'expérimentation aujourd'hui. L'objectif de réaliser une centrale à fusion, qui convertirait la chaleur (Dans le langage courant, les mots chaleur et température ont souvent un sens équivalent : Quelle chaleur !) dégagée par les réactions de fusion en électricité, est encore loin d'être atteint. Les communautés scientifiques nationales et internationales se sont lancées dans de gros projets à la hauteur (La hauteur a plusieurs significations suivant le domaine abordé.) de cet enjeu considérable. L'ampleur des investissements laisse perplexe une partie de la population. Le développement de la fusion nucléaire est actuellement une source de débats quant à la pertinence d'engager de telles sommes pour un résultat non assuré. Dans ce contexte (Le contexte d'un évènement inclut les circonstances et conditions qui l'entourent; le contexte d'un mot, d'une phrase ou d'un texte inclut les mots qui l'entourent. Le concept de contexte issu traditionnellement de l'analyse...), les attentes sont nombreuses et pressantes.


Vue en coupe du réacteur Iter

C'est donc avec enthousiasme que Luis Delgado-Aparicio et David Gates, tous deux physiciens au Princeton Plasma ( En physique, le plasma décrit un état de la matière constitué de particules chargées (d'ions et d'électrons). Le...) Physics Laboratory du U.S. Department of Energy, ont récemment fait part de leur découverte. Ils se sont intéressés aux instabilités qui peuvent survenir au sein du plasma dans les configurations de type "tokamaks", et qui constituent le problème majeur freinant leur développement. L'apparition de ces instabilités tridimensionnelles dites "disruptions" ont été reconnues comme inévitables, même en conditions normales de confinement. Elles correspondent à une perte violente et très rapide du confinement du plasma, et peuvent endommager significativement le matériel. Par ailleurs, les risques d'endommagement sont d'autant plus élevés que la puissance (Le mot puissance est employé dans plusieurs domaines avec une signification particulière :) du tokamak est importante. Ainsi le prototype de tokamak de puissance ITER, actuellement en cours de construction à Cadarache (Le centre de Cadarache est un centre de recherche nucléaire français situé dans les Bouches-du-Rhône, au confluent du Verdon et de la...), pourrait voir l'ensemble (En théorie des ensembles, un ensemble désigne intuitivement une collection d’objets (les éléments de l'ensemble), « une multitude qui peut être comprise comme un...) de son installation gravement endommagée.

L'une des causes importantes de ces disruptions est l'élévation de la densité du plasma au-delà d'une certaine valeur critique dite "limite de Greenwald". Cette limite semble universelle et son origine reste jusqu'à ce jour (Le jour ou la journée est l'intervalle qui sépare le lever du coucher du Soleil ; c'est la période entre deux nuits, pendant laquelle les rayons du Soleil...) énigmatique. Pour que la fusion se produise dans le plasma, il faut que celui-ci soit suffisamment dense et chaud pour permettre le rapprochement des noyaux légers contenus dans ce plasma et provoquer leur recombinaison en noyaux plus lourds. Cette recombinaison s'accompagne d'un fort dégagement d'énergie sous forme de chaleur, que l'on cherche à récupérer pour produire ensuite de l'électricité. Cette réaction de fusion est d'ailleurs mise à l'oeuvre naturellement dans le soleil (Le Soleil (Sol en latin, Helios ou Ήλιος en grec) est l'étoile centrale du système solaire. Dans la classification astronomique, c'est...) et la plupart des étoiles. A priori, plus on injecte d'énergie dans le plasma, plus l'on s'attend à en augmenter la densité, et donc à privilégier les réactions de fusion. La limite de Greenwald contredit cette intuition. Par ailleurs, étant donné que le taux de réactions nucléaires est proportionnel au carré de la densité du plasma, cette limite bride les performances d'un tokamak de taille donnée. Ainsi les scientifiques cherchent à en expliquer les origines depuis des décennies.

L'étude approfondie de L.Delgado et D. Gates se penche sur ce problème. Ils proposent une explication toute fraîche, différente de celle proposée par Greenwald, le physicien (Un physicien est un scientifique qui étudie le champ de la physique, c'est-à-dire la science analysant les constituants fondamentaux de l'univers et les forces qui les relient. Le mot...) du MIT qui a établi l'équation décrivant cette limite (et qui porte son nom). D'après Greenwald, l'instabilité proviendrait d'un rayonnement (Le rayonnement, synonyme de radiation en physique, désigne le processus d'émission ou de transmission d'énergie impliquant une particule porteuse.) excessif du plasma de bord qui abaisse sa température, augmentant ainsi sa résistivité. Le courant qui circule dans le plasma se transfère alors du bord vers son centre, si bien que la densité de courant au centre atteint la valeur seuil (dite de Kruskal-Shafranov (KS), proportionnelle au champ (Un champ correspond à une notion d'espace défini:) toroïdal) à partir de laquelle se développe une instabilité magnétohydrodynamique (MHD): le plasma s'entortille et touche la paroi du tokamak où il se refroidit. Le courant du plasma est ainsi forcé de pénétrer dans la paroi, d'où des dégradations. Cependant l'initiation et le terme de ce processus ne sont pas clairs.

L'approche proposée par L. Delgado et D. Gates se concentre sur les îlots magnétiques qui se forment lorsque la limite est atteinte. Ils montrent à l'appui d'équations que ces derniers seraient la cause de l'effondrement du plasma. Le rapprochement entre ces ilots et l'effondrement n'est pas nouveau, mais la relation de cause à effet n'a pas été mise en évidence dans les précédentes études.

Voilà donc le nouveau scénario qu'ils proposent: les îlots seraient responsables de deux effets négatifs: d'une part ils accumulent des impuretés provenant des parois du tokamak qui refroidissent le plasma, et d'autre part, ils agissent tels des boucliers contre l'ajout supplémentaire d'énergie dans le système. Lorsque la puissance injectée devient inférieure à la puissance dégagée des îlots par effet Joule (L'effet Joule est la manifestation thermique de la résistance électrique. Il se produit lors du passage d'un courant électrique dans tous...), l'équilibre se rompt. Les îlots se développent jusqu'à atteindre une taille suffisamment importante pour entraîner l'effondrement du courant électrique qui aide à confiner le plasma. Le plasma disparaît alors en quelques millisecondes.

Il ne reste maintenant plus qu'à vérifier ces hypothèses expérimentalement, ce qui est prévu prochainement sur les tokamaks C-Mod du MIT et DIII-D de General Atomics à San Diego. Grâce à cette nouvelle vision du problème, L. Delgado et D. Gates ont pensé à une éventuelle solution pour parvenir à des densités au-delà de la limite de Greenwald: celle-ci consisterait à injecter l'énergie directement au coeur des îlots. Si cette manipulation s'avérait fonctionner, les conditions nécessaires à la fusion (hautes températures et densité élevée) pourraient alors être bien plus aisément mises en oeuvre dans le futur.

Commentez et débattez de cette actualité sur notre forum Techno-Science.net. Vous pouvez également partager cette actualité sur Facebook, Twitter et les autres réseaux sociaux.
Icone partage sur Facebook Icone partage sur Twitter Partager sur Messenger Icone partage sur Delicious Icone partage sur Myspace Flux RSS
Source: BE Etats-Unis numéro 288 (7/05/2012) - Ambassade de France aux Etats-Unis / ADIT - http://www.bulletins-electroniques.com/ ... /69903.htm