Recherchez sur tout Techno-Science.net
       
Techno-Science.net : Suivez l'actualité des sciences et des technologies, découvrez, commentez
Catégories
Techniques
Sciences
Encore plus...
Techno-Science.net
Photo Mystérieuse

Que représente
cette image ?
Posté par Redbran le Jeudi 01/12/2016 à 12:00
La transition laminaire-turbulent dans les ailes en flèche

A380. ©Techno-Science.net
Un nouvel éclairage sur la transition laminaire-turbulent dans les ailes en flèche

Le processus par lequel un écoulement laminaire devient turbulent est extraordinairement complexe et n'est pas encore totalement compris; cependant, certains éléments de rugosité sur les ailes peuvent réduire l'écoulement turbulent (Le HMS Turbulent (n° de coque : S 87) est un bâtiment de la classe Trafalgar de sept sous-marins nucléaires d'attaque de la Royal Navy.) et donc la traînée (En mécanique des fluides, la traînée est la force qui s'oppose au mouvement d'un corps dans un liquide ou un gaz. Mathématiquement c'est la composante des efforts exercés sur le...) de friction. Des scientifiques financés par l'UE apportent un nouvel éclairage sur le rôle de différents mécanismes d'instabilité qui contribuent à cette transition sur une aile en flèche présentant ce type d'éléments.

Au cours des dernières années, la transition vers la turbulence (La turbulence désigne l'état d'un fluide, liquide ou gaz, dans lequel la vitesse présente en tout point un caractère...) dans les couches limites des ailes en flèche a fait l'objet (De manière générale, le mot objet (du latin objectum, 1361) désigne une entité définie dans un espace à trois dimensions, qui a une fonction précise, et qui peut être désigné par une étiquette...) de nombreuses recherches. Plusieurs expériences ont déjà mis en évidence l'importance des éléments distribués de microrugosité, montrant que de très petites imperfections de surface (Une surface désigne généralement la couche superficielle d'un objet. Le terme a plusieurs acceptions, parfois objet géométrique, parfois frontière physique, et est souvent abusivement confondu avec sa mesure, sa...) peuvent produire un effet majeur sur l'emplacement de la transition. Cependant, les efforts des chercheurs pour contrôler la transition avec ces éléments ont été infructueux, en raison de petites différences de niveau de bruit (Dans son sens courant, le mot de bruit se rapproche de la signification principale du mot son. C'est-à-dire vibration de l'air pouvant donner lieu à la création d'une sensation auditive.) dans les souffleries utilisées pour les expériences actuelles.

Des scientifiques financés par l'UE et travaillant sur le projet (Un projet est un engagement irréversible de résultat incertain, non reproductible a priori à l’identique, nécessitant le...) RODTRAC (Robustness of distributed micron-sized roughness-element for transition control) ont utilisé des techniques de modélisation numérique (Une information numérique (en anglais « digital ») est une information ayant été quantifiée et...) et mené des expériences en soufflerie pour tester la réceptivité de la couche limite (La couche limite est une zone d'interface entre un corps et le fluide environnant lors d'un mouvement relatif entre les deux. On y observe les effets de la viscosité. Elle est un élément...) à des perturbations externes telles que la turbulence de flux (Le mot flux (du latin fluxus, écoulement) désigne en général un ensemble d'éléments (informations / données, énergie, matière, ...) évoluant dans un sens...) libre et les ondes (Une onde est la propagation d'une perturbation produisant sur son passage une variation réversible de propriétés physiques locales. Elle transporte de l'énergie sans transporter de matière.) acoustiques. La réceptivité est le mécanisme par lequel les perturbations de flux libre pénètrent dans la couche limite et créent les conditions initiales pour des ondes instables.

Des simulations numériques détaillées ont permis d'évaluer et d'expliquer de façon minutieuse les effets des perturbations acoustiques et tourbillonnaires, en conjonction ou séparément. Ces simulations s'accompagnaient de calculs de stabilité et d'analyses de réceptivité. Les résultats ont montré, indépendamment du niveau de turbulence de flux libre, que les tourbillons stationnaires de croisement de flux constituent les principaux mécanismes d'instabilité lorsque des éléments de microrugosité sont présents. De plus, l'interaction (Une interaction est un échange d'information, d'affects ou d'énergie entre deux agents au sein d'un système. C'est une action réciproque qui suppose l'entrée en contact de sujets.) des ondes acoustiques et des éléments de rugosité provoquait une excitation des tourbillons tangentiels instables.

Des expériences avec une turbulence et des perturbations acoustiques contrôlées ont complété le travail numérique et ont été utilisées pour valider les résultats. Dans les niveaux de faible turbulence, les éléments distribués de microrugosité stabilisaient les écoulements de couche limite et déplaçaient la transition plus en aval. Dans de tels cas, des champs acoustiques dans certaines plages de fréquences se sont avérés déstabiliser encore plus la position de la transition. Les niveaux de haute turbulence n'ont pas retardé la transition laminaire-turbulent.

RODTRAC a amélioré les connaissances concernant l'interaction des différentes sources de perturbations sur la transition dans les couches limites de l'aile en flèche. Les résultats et les conclusions du projet seront utilisés pour améliorer les prévisions concernant les performances des avions équipés d'ailes laminaires, ce qui facilitera la conception d'avions de pointe.

Pour plus d'information voir: Final Report Summary - RODTRAC (Robustness of distributed micron-sized roughness-element for transition control)

Commentez et débattez de cette actualité sur notre forum Techno-Science.net. Vous pouvez également partager cette actualité sur Facebook, Twitter et les autres réseaux sociaux.
Icone partage sur Facebook Icone partage sur Twitter Partager sur Messenger Icone partage sur Delicious Icone partage sur Myspace Flux RSS
Source: CORDIS-Europa