Recherchez sur tout Techno-Science.net
       
Techno-Science.net : Suivez l'actualité des sciences et des technologies, découvrez, commentez
Catégories
Techniques
Sciences
Encore plus...
Techno-Science.net
Bons plans et avis Gearbest: Xiaomi Mi Mix2, OnePlus 5T
Code promo Gearbest: réduction, coupon, livraison...
Photo Mystérieuse

Que représente
cette image ?
Posté par Adrien le Dimanche 22/10/2017 à 00:00
Les liens entre l'architecture 3D du génome et la construction du cerveau décodés
L'équipe de Giacomo Cavalli à l'Institut de génétique humaine, a généré des cartes en trois dimensions à ultra-haute résolution des contacts au sein de la chromatine in vivo à partir de cellules de cerveau de souris. Ceci montre que l'architecture (L’architecture peut se définir comme l’art de bâtir des édifices.) tridimensionnelle du génome subit des changements à de multiples échelles pendant le développement. De nombreux contacts dynamiques associés aux facteurs de transcription, au processus d'épissage de l'ARN et à la régulation épigénétique sont ainsi révélés. Cette étude publiée le 19 octobre 2017 dans la revue Cell, illustre comment l'organisation (Une organisation est) spatiale du génome est profondément liée à sa fonction.


Figure: Remaniement multi-échelle de l'architecture de la chromatine pendant le développement du cerveau de la souris (Le terme souris est un nom vernaculaire ambigu qui peut désigner, pour les francophones, avant tout l’espèce commune Mus musculus, connue aussi comme animal de compagnie...). A. Les gènes fortement épissés s'engagent dans des contacts 3D à très longue portée, qui engagent des loci dans le même chromosome (Le chromosome (du grec khroma, couleur et soma, corps, élément) est l'élément porteur de l'information génétique. Les chromosomes contiennent les gènes et permettent leur...) ou différents chromosomes. B. La force (Le mot force peut désigner un pouvoir mécanique sur les choses, et aussi, métaphoriquement, un pouvoir de la volonté ou encore une vertu morale...) d'interaction (Une interaction est un échange d'information, d'affects ou d'énergie entre deux agents au sein d'un système. C'est une action réciproque...) entre paires de régions promotrices des gènes est corrélée avec leurs niveaux d'expression. C. De multiples changements de la morphologie, de l'organisation 3D globale du génome, de la compartimentalisation et des boucles chromatiniennes régulatrices ont lieu durant la différenciation neuronale.
© Boyan Bonev
© Illustration résumé: Elisa Cavalli

La façon dont le génome est organisé en 3D est apparue récemment comme intimement liée à sa fonction biologique et constitue un nouvel aspect passionnant du domaine de l'épigénétique, cette branche de la biologie (La biologie, appelée couramment la « bio », est la science du vivant. Prise au sens large de science du vivant, elle recouvre une partie des sciences naturelles et de l'histoire...) qui étudie l'information héritable au-delà de la séquence de l'ADN. Les changements dans l'architecture du noyau cellulaire peuvent modifier le devenir cellulaire et des perturbations dans cette architecture peuvent entraîner des phénomènes pathologiques. Des interactions régulatrices entre des régions spécifiques déterminent si les gènes impliqués seront activés ou réprimés et sont donc essentielles pour établir et maintenir l'identité cellulaire pendant le développement. Ces interactions sont difficiles à étudier dans l'ensemble (En théorie des ensembles, un ensemble désigne intuitivement une collection d’objets (les éléments de l'ensemble), « une multitude qui peut être comprise comme un tout », comme...) du génome en raison de l'énorme complexité des contacts possibles à l'intérieur du noyau, où plus de 2 m d'ADN sont condensés dans l'espace minuscule du noyau cellulaire d'environ 10?m de diamètre.

En utilisant une nouvelle approche combinant la purification des populations de types cellulaires spécifiques in vivo (In vivo (en latin : « au sein du vivant ») est une expression latine qualifiant des recherches ou des examens pratiqués sur un...), suivie d'une cartographie (La cartographie désigne la réalisation et l'étude des cartes géographiques. Le principe majeur de la cartographie est la représentation de données sur un support...) de leur architecture nucléaire 3D avec une résolution spatiale sans précédent, les chercheurs montrent que les changements dans l'organisation du génome se produisent à des échelles spatiales multiples pendant le développement du cerveau de la souris. Ils observent que, lorsque les gènes sont activés, ils sont généralement associés à la définition de frontières capables d'isoler des domaines chromosomiques des régions génomiques adjacentes. Cependant, l'induction de la transcription par des techniques de génie génétique (CRISPR/Cas9) n'est pas suffisante pour créer de telles frontières, ce qui suggère qu'elles sont définies par des facteurs spécifiques qui demeurent inconnus. En outre, les chercheurs ont découvert que les gènes fortement épissés se contactent de manière préférentielle à l'intérieur du noyau, ce qui indique une association jusqu'alors inconnue entre le processus d'épissage de l'ARN et l'organisation 3D du génome.

Ces découvertes sont valables dans tous les types cellulaires étudiés, mais les chercheurs ont aussi identifié des contacts 3D spécifiques de chaque type cellulaire. Un réseau de contacts liés aux facteurs épigénétiques nommés Polycomb, est très prononcé dans les cellules souches, mais il est fortement perturbé lors de la différenciation neurale. D'autre part, des interactions chromatiniennes entre sites fixés spécifiquement par plusieurs facteurs de transcription neuronaux sont établies durant le processus de différenciation. Par ailleurs, les chercheurs montrent que les contacts 3D entre les régions régulatrices appelés « enhancers » et les régions promotrices de leurs gènes cibles sont régulés dynamiquement et sont généralement établis au moment de l'activation (Activation peut faire référence à :) de ces gènes.

Ces résultats illustrent comment l'architecture nucléaire 3D est fortement liée à la fonction physiologique et pathologique normale du cerveau in vivo. Ils ont des implications pour la compréhension de plusieurs maladies liées au cerveau telles que le handicap (On nomme handicap la limitation des possibilités d'interaction d'un individu avec son environnement, causée par une déficience qui provoque une...) intellectuel et l'autisme (Le terme autisme tend a désigner aujourd'hui un trouble affectant la personne dans trois domaines principaux:), qui sont fréquemment associés aux processus de remodelage de la chromatine

Commentez et débattez de cette actualité sur notre forum Techno-Science.net. Vous pouvez également partager cette actualité sur Facebook, Twitter et les autres réseaux sociaux.
Icone partage sur Facebook Icone partage sur Twitter Partager sur Messenger Icone partage sur Delicious Icone partage sur Myspace Flux RSS
Source: CNRS-INSB