Recherchez sur tout Techno-Science.net
       
Techno-Science.net : Suivez l'actualité des sciences et des technologies, découvrez, commentez
Catégories
Techniques
Sciences
Encore plus...
Techno-Science.net
Photo Mystérieuse

Que représente
cette image ?
 A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | +
Paire

Introduction

On dit qu'un ensemble E est une paire lorsqu'il est formé de deux éléments distincts a et b, et il s'écrit alors :

E=\left\{a, b\right\}

Quand l'ensemble E est formé d'un seul élément, a, on dit que E est un singleton, et on l'écrit alors :

E=\left\{a\right\}

Remarques

  • On peut utiliser la notation {a, b} même si a = b. C'est bien utile quand on manipule des variables, on peut écrire {x, y}, sans supposer que xy, et cela évite de multiplier les sous-cas dans un certain nombre (La notion de nombre en linguistique est traitée à l’article « Nombre grammatical ».) de raisonnements élémentaires de théorie des ensembles (La théorie des ensembles est une branche des mathématiques créée initialement par le mathématicien allemand Georg Cantor à la fin du XIXe siècle.). Cependant si a = b alors l'ensemble (En théorie des ensembles, un ensemble désigne intuitivement une collection d’objets (les éléments de l'ensemble), « une multitude qui peut être comprise...) {a, b} n'est pas une paire (On dit qu'un ensemble E est une paire lorsqu'il est formé de deux éléments distincts a et b, et il s'écrit alors :) mais le singleton {a}.
  • La paire est un ensemble : elle n'est pas ordonnée. On peut indifféremment écrire {a, b} ou {b, a} pour désigner le même ensemble. Ceci différencie la paire du couple.
{a, b} = {b, a}, que a et b soient ou non distincts, tandis que (a , b) ≠ (b , a) dès que a et b sont distincts.

Propriétés

Appartenance d'un élément à une paire (ou à un singleton)

On a vu que l'écriture {a, b} peut s'utiliser même si a = b. Nous parlerons donc de paire ou singleton {a, b}.

Un élément x appartient à une paire si et seulement s'il est égal à l'un des deux éléments de cette paire. Cet énoncé est en fait tout (Le tout compris comme ensemble de ce qui existe est souvent interprété comme le monde ou l'univers.) autant valable pour un singleton. On peut donc l'écrire formellement, pour a et b donnés :

x[ x ∈ {a, b} ⇔ (x = a ou x = b)]

(le « ou » en question désigne, comme d'habitude en mathématiques (Les mathématiques constituent un domaine de connaissances abstraites construites à l'aide de raisonnements logiques sur des concepts tels que les nombres, les...), une disjonction inclusive : l'énoncé reste vrai si x = a et x = b).

Cette propriété caractérise les paires (ou singletons). Quand on axiomatise la théorie (Le mot théorie vient du mot grec theorein, qui signifie « contempler, observer, examiner ». Dans le langage courant, une théorie est une idée ou une connaissance spéculative, souvent basée sur...) des ensembles, usuellement on utilise un axiome (Un axiome (du grec ancien αξιωμα/axioma, « considéré comme digne, convenable, évident en soi ») désigne une vérité indémontrable qui...) spécifique, appelé axiome de la paire (En mathématiques, l'axiome de la paire est l'un des axiomes de la théorie axiomatique des ensembles, plus précisément des théories des ensembles de Zermelo et de Zermelo-Fraenkel.), pour l'existence d'un ensemble ayant cette propriété, deux éléments non nécessairement distincts étant donnés.

Dans le cas des singletons (a = b), la propriété caractéristique peut bien-sûr se simplifier :

x[ x ∈ {a} ⇔ x = a].

Égalité de deux paires (ou singletons)

Deux paires ou singletons sont égales si et seulement si leurs éléments sont égaux deux à deux, de l'une des deux façons dont on peut les associer. Plus précisément, pour deux paires ou singletons {a, b} et {c, d} :

[{a, b} = {c, d}] ⇔ [(a = c et b = d) ou (a = d et b = c)]

L'énoncé se simplifie si l'on sait que l'une des deux ensembles est un singleton :

[{a} = {c, d}] ⇔ [a = c et a = d]

et se simplifie d'autant plus pour l'égalité des singletons :

{a} = {c} ⇔ a = c

Paires disjointes

Deux paires ou singletons sont disjointes si et seulement si chacun des éléments de la première paire ou singleton sont distincts de chacun des deux éléments de l'autre, ce qui, pour des paires, signifie que les quatre éléments (Dans le cadre de la philosophie naturelle, la théorie des quatre Éléments est une façon traditionnelle de décrire et d'analyser le monde.) des deux paires sont deux à deux distincts. Pour deux paires ou singletons {a, b} et {c, d} on a donc :

{a, b} ∩ {c, d} = ∅ si et seulement si (ac et ad et bc et bd)

Cardinalité (En linguistique, les nombres entiers naturels zéro, un, deux, trois, etc. s'appellent des adjectifs numéraux cardinaux. En mathématiques, un nombre cardinal est...) d'une paire

La cardinal d'un ensemble est ce l'on appelle usuellement pour les ensembles finis son nombre d'éléments. Une paire est donc évidemment un ensemble fini (En mathématiques, un ensemble E est dit fini si et seulement si E est vide ou s'il existe un entier n et une bijection de E dans l'ensemble des n premiers entiers...) de cardinal 2.

Autres propriétés

  • Un raisonnement simple de dénombrement montre que le nombre de paires (les « vraies » paires, sans les singletons) d'un ensemble fini à n éléments est égal à {n(n-1)\over 2} (voir l'article combinaison).
Source: Wikipédia publiée sous licence CC-BY-SA 3.0. Vous pouvez soumettre une modification à cette définition sur cette page.

La liste des auteurs de cet article est disponible ici.
Archives des News
  Août 2017
  Juillet 2017
  Juin 2017
  Mai 2017
  Toutes les archives

Lundi 21 Août 2017 à 00:00:27 - Vie et Terre - 1 commentaire
» Nouvelle technologie en génie génique