Nanotube - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs est disponible ici.

Le nanotube est une structure cristalline particulière, de forme tubulaire, creuse et close, composée d'atomes disposés régulièrement en pentagones, hexagones et/ou heptagones, obtenue à partir de certains matériaux, en particulier le carbone et le nitrure de bore.

Un nanotube de carbone monofeuillet.
Un nanotube de carbone monofeuillet.

Nanotubes de carbone

Les nanotubes de carbone sont une forme de structure cristalline du carbone proche des fullerènes. Ils sont un des premiers produits industriels du domaine des nanotechnologies.

Image d'un bout de nanotube réalise par un  microscope électronique
Image d'un bout de nanotube réalise par un microscope électronique

Les fullerènes ont été découverts en 1985 par Harold Kroto, Robert Curl et Richard Smalley (ils ont obtenu collectivement le prix Nobel de chimie en 1996 pour leurs travaux sur les fullerènes).

En 1990, Wolfgang Kraetschmer et Don Huffman découvrent un procédé permettant de synthétiser des quantités importantes de fullerènes, permettant à la recherche de travailler sur des échantillons plus significatifs.

Les nanotubes eux-mêmes ont été découverts en 1991 par Sumio Iijima, dans un sous-produit de fullerènes.

Structure

Il existe deux types de nanotubes de carbone :

  • les nanotubes de carbone monofeuillets, en anglais Single Wall Carbon Nanotubes (SWNT) ;
  • les nanotubes de carbone multifeuillets, en anglais Multi Wall Carbon Nanotubes (MWNT).

Nanotubes de carbone monofeuillets (SWNT, single walled nanotubes)

Animation d'un nanotube de carbone monofeuillet
Animation d'un nanotube de carbone monofeuillet

La structure d'un nanotube de carbone monofeuillet peut être représentée par un feuillet de graphène enroulé sur lui-même et fermé à ses deux extrémités par une demi-sphère. La façon dont le feuillet de graphène est replié sur lui-même définit un paramètre, appelé hélicité, qui fixe la structure du nanotube. L'hélicité permet de caractériser les différents types de nanotubes existants.

Enroulement

L'enroulement consiste à superposer deux hexagones du feuillet de graphène. C'est le choix de ces deux hexagones qui va déterminer le diamètre du nanotube ainsi que son hélicité (θ). Pour définir cette hélicité, on prend une direction de référence parallèle à un côté d'un hexagone et on mesure l'hélicité comme l'angle entre l'axe du cylindre formé et cette direction de référence. De ce fait, l'angle θ varie de 0 à 30° compte tenu de la symétrie du réseau hexagonal. Cet angle permet donc de classer les nanotubes de carbone en différentes familles selon leur hélicité. On obtient deux grandes familles de nanotubes : les nanotubes chiraux et les nanotubes non chiraux. Les nanotubes non chiraux sont ceux dont les hexagones de la partie supérieure du cylindre ont la même orientation que ceux de la partie inférieure. Dans ce cas lorsque θ vaut 30° on a un tube dit " chaise " et quand θ vaut 0° on a un tube dit " zig zag ". Lorsque les orientations des hexagones sont différentes (les rangées d'hexagones des parties supérieure et inférieure font entre elles un angle de valeur 2 θ) on a des tubes chiraux qui forment une vis d'Archimède.

Extrémités

On obtient ainsi un tube ouvert à ses deux extrémités, il reste donc à le fermer. Pour cela il faut introduire des défauts de courbure dans le plan de graphène, il s'agit ici de pentagones.

Ces pentagones introduisent une courbure de 112° dans le feuillet et les lois mathématiques d'Euler montrent qu'il faut un minimum de 12 pentagones pour fermer le feuillet (soit 6 pentagones à chaque extrémité du tube). Les études montrent que la molécule de C60 contient justement 12 pentagones et 20 hexagones : il s'agit donc de la plus petite fullerène possible. Cependant, alors qu'une distribution théorique régulière de ces pentagones donne une forme hémisphérique, on observe le plus souvent une pointe de forme conique.

On a donc montré que le nanotube de carbone est formé avec un feuillet de graphène auquel on a ajouté de la courbure simple pour rouler ce feuillet sur lui-même et des défauts de topologie pour fermer ses extrémités. Un nanotube a un diamètre compris entre 1 et 10 nanomètres pour une longueur de plusieurs micromètres et est de ce fait un objet de taille moléculaire et possédant un caractère monodimensionnel. (L'une des dimensions est bien plus grande que les deux autres, ici la longueur face au diamètre).

Nanotubes de carbone multifeuillets (MWNT, multiwalled Nanotubes)

Un nanotube de carbone multifeuillet est constitué de plusieurs feuillets de graphènes enroulés les uns autour des autres. Il existe deux modèles pour décrire la structure des nanotubes multifeuillets. Dans le modèle poupée russe, les plans de graphènes sont arrangées en cylindres concentriques. Dans le modèle parchemin, un seul feuillet de graphène est enroulé sur lui même, comme une feuille de papier.

Propriétés

Les nanotubes de carbone suscitent un énorme intérêt dans le monde de la recherche autant fondamentale qu'appliquée car leurs propriétés sont exceptionnelles à bien des égards. D'un point de vue mécanique, ils présentent à la fois une excellente rigidité (mesurée par le module d'Young), comparable à celle de l'acier, tout en étant extrêmement légers. Des points de vue électrique et optique, les nanotubes monofeuillets ont la particularité tout à fait exceptionnelle de pouvoir être soit métalliques soit semi-conducteurs en fonction de leur géométrie (diamètre du tube et angle d'enroulement de la feuille de graphène).

Propriétés mécaniques

Les nanotubes se montrent intéressants par les principales caractéristiques suivantes :

Résilience

Bien que difficile à vérifier expérimentalement (la petite taille des nanotubes ne permet pas de véritables tests de contrainte pour l'instant), la résistance des nanotubes de carbone devrait être (d'après des simulations informatiques) environ 200 fois supérieure à l'acier pour un poids 6 fois moindre (à section équivalente).

Ces propriétés varient aussi selon la nature du nanotube. Les nanotubes multifeuillets sont beaucoup plus résistants que les nanotubes monofeuillets.

Dureté

Certains nanotubes sont plus durs que le diamant, selon cette étude.

Conductivité thermique

Les nanotubes de carbone ont une conductivité thermique plus grande que celle du diamant (de 6 à 20 W.cm-1.K-1).

Propriétés électriques

  • Les nanotubes ont une conductivité supérieure à celle du cuivre (et 70 fois supérieure à celle du silicium).
  • Le nanotube de carbone a la plus grande mobilité [1] jamais mesurée : 100 000 cm².V-1s-1 à 300 K (le précédent record étant de 77 000 cm².V-1s-1 pour l'antimoniure d'indium).
  • Les nanotubes de carbone sont supraconducteurs à basse température.
  • Les nanotubes de carbone permettent de réaliser des transistors à un niveau de miniaturisation jamais atteint jusqu'à maintenant. Des chercheurs d'IBM ont d'ores et déjà réussi à créer un transistor sur un nanotube.
  • Les nanotubes de carbone pourraient également permettre de réaliser des émetteurs de champs (d'électrons, en d'autres termes) à l'échelle du nanomètre.

Les propriétés électriques des nanotubes dépendent de la nature du nanotube : les nanotubes monofeuillets ont des meilleures propriétés que les multi-feuillets (ces derniers ont de moins bonnes propriétés en partie à cause des interactions électriques, de type van der Waals, entre les différentes couches de graphène).

Propriétés d'émission de champ

Les nanotubes peuvent présenter une longueur extrêmement grande devant leur diamètre (rapport d'aspect >1000). Soumis à un champ électrique, ils vont donc présenter un très fort effet de pointe (cf. principe du paratonnerre). Avec des tensions relativement faibles, on peut générer à leur extrémité des champs électriques colossaux, capables d'arracher les électrons de la matière et de les émettre vers l'extérieur. C'est l'émission de champ. Cette émission est extrêmement localisée (à l'extrémité du tube) et peut donc servir à envoyer des électrons sur un endroit bien précis, un petit élément de matériau phosphorescent qui constituera le pixel d'un écran plat par exemple. Le matériau phosphorescent évacue l'énergie reçue sous forme de lumière (même principe que les écrans de tubes cathodiques). L'exploitation de cette propriété a déjà permis de réaliser des prototypes d'écrans plats à nanotubes (Samsung et Motorola). [2].

Propriétés chimiques

Les nanotubes sont des structures creuses, que l'on peut remplir avec d'autres composés chimiques, ce qui en fait des récipients clos à l'échelle nanométrique, appelés nanofils. Les nanotubes de carbone sont relativement peu réactifs et une modification chimique de leur surface fait souvent appel à des espèces fortement réactives (oxydants forts, réducteurs forts, espèces radicalaires par exemple). C'est pourquoi une chimie de greffage de nanotubes basée sur des interactions non covalentes s'est fortement développée ces dernières années (adsorption de tensioactifs, enroulement de polymères, d'ADN, adsoprtion de pyrènes, etc).

Propriétés optiques

Propriétés d'électroluminescence

Des chercheurs d'IBM ont indiqué avoir réussi à faire émettre de la lumière infra-rouge par des nanotubes de carbone semi-conducteurs placés dans une géométrie de transistor. Les nanotubes non dopés et soumis à un champ électrique généré par une grille peuvent conduire le courant par l'intermédiaire d'électrons (tension de grille négative) ou de trous (tension de grille positive). Si on soumet en plus le nanotube à une tension drain-source (entre les deux extrémités du tube), le courant est transporté par des trous à une extrémité et des électrons à l'autre (transistor ambipolaire). À l'endroit où ces deux types de porteurs se rencontrent (par exemple au milieu du tube si la tension de grille est nulle), il y a recombinaison de paires électron-trou et émission d'un photon.

Propriétés de photoluminescence

Défauts

Comme dans de nombreux matériaux, l'existence de défauts affecte ses propriétés. Ils peuvent se présenter sous la forme :

  • de vides atomiques (atomes manquant dans la structure du graphène). De tels défauts peuvent affecter la résistance physique des nanotubes, voire dans les cas plus graves la faire baisser de 15% [3].
  • de Stone Wales defect: au lieu de former des hexagones, les atomes de carbones se réarrangent en pentagones ou en heptagones.

De par leur structure presque uni-dimensionelle, la résistance physique des nanotubes dépend de la section la plus faible : comme sur une chaine, la résistance de celle-ci est celle du maillon le plus faible.

Les propriétés électriques sont aussi affectées par ces défauts. En général, la zone présentant un défaut est moins bonne conductrice.

Il en est de même pour les propriétés thermiques.

Synthèse des nanotubes de carbone

Il existe plusieurs manières de synthèse. On peut citer deux grandes familles: les synthèses à haute température, et les synthèses à moyenne température, ou CVD (Chemical Vapour Deposition)

Méthodes à haute température

C'est la méthode préférentielle pour obtenir des nanotubes monofeuillets. Sous des conditions de température et de pression élevées, on fait évaporer du carbone (du graphite, le plus souvent) dans une atmosphère de gaz rare, en général de l'hélium ou de l'argon.

Différentes méthodes

Ablation par arc électrique

C'est la méthode historique utilisée par Sumio Iijima (qui observa le premier les nanotubes de carbone). On établit en fait un arc électrique entre deux électrodes de graphite. Une électrode, l'anode, se consume pour former un plasma dont la température peut atteindre 6 000 °C. Ce plasma se condense sur l'autre électrode, la cathode, en un dépôt caoutchouteux et filamenteux évoquant une toile d'araignée très dense et contenant les nanotubes. C'est un procédé très peu coûteux et assez fiable. Cependant le processus est tellement complexe qu'au final on a que peu de contrôle sur le résultat. De plus, la haute température nécessaire au procédé ne permettait pas d'obtenir en grande quantité un matériau exploitable (les nanotubes ont tendance à fondre partiellement et à s'agglutiner).

Ablation par laser

Ce second procédé de vaporisation, mis au point à partir 1992, consiste à ablater une cible de graphite avec un rayonnement laser de forte énergie pulsé ou continu. Le graphite est soit vaporisé soit expulsé en petits fragments de quelques atomes. C'est un procédé coûteux mais plus facile de contrôle, ce qui permet d'étudier la synthèse et de n'obtenir que les produits désirés.

Ce procédé permit de faire baisser la température de la réaction à 1 200 °C.

Synthèse dans un four solaire

On concentre en fait l'énergie solaire sur le graphite pour atteindre la température de vaporisation. Ce procédé permet de synthétiser en moyenne de 0.1 g à 1 g de nanotube par " expérience". [4]

Avantages et inconvénients

Avantages :

  • ces méthodes permettent de synthétiser, des nanotubes monofeuillets (alors qu'avec les autres méthodes on obtient uniquement des nanotubes multifeuillets, ou un mélange indissociable) ;
  • elles permettent de former des produits très purs.

Inconvénients :

  • on n'a aucun contrôle sur la longueur des nanotubes ;
  • il se forme de véritables amas qu'il faut dissocier pour pouvoir faire des applications.

Une méthode pour utiliser les produits de ces synthèses consiste à disperser les nanotubes dans une solution aqueuse grâce à des tensio-actifs (les nanotubes sont hydrophobes). La dispersion est extrudé dans une solution visqueuse contenant un polymère qui déstabilise la suspension et conduit à l'agrégation des nanotubes sous formes de rubans fins. Ces rubans, de quelques microns d'épaisseur et quelques millimètres de largeurs sont constitués de nanotubes enchevêtrés qui présentent une orientation préférentielle, due à l'écoulement. Lorsqu'on laisse sécher ces rubans à l'air, ils se contractent, l'eau contenue dans ces rubans étant évacuée par capillarité, jusqu'à former des fibres denses, utilisables pour des applications similaires à celles des fibres de carbone.

Méthode CVD

On part ici d'une source de carbone liquide (toluène, benzène, cyclohexane) à laquelle on ajoute un précurseur métallique. On utilise fréquemment du ferrocène (C5H10-Fe-C5H10) (parfois du nickelocène C5H10-Ni-C5H10). On transforme la solution en aérosol (fines gouttelettes) transportées alors par un gaz inerte (de l'argon en général) jusqu'à un four à une température comprise entre 750 °C et 900 °C . Les nanotubes " poussent " alors, soit sur la paroi en verre du tube, soit sur une plaque de silicium (placée pour faciliter la récupération des nanotubes, on récupère après réaction la plaque ou les nanotubes sont alignés). On récupère des nanotubes multifeuillets, alignés, d'une longueur d'environ 200 μm. L'apport continu de réactifs va obliger les nanotubes naissant à prendre le moins de place possible, donc de s'aligner tous dans une direction, la verticale du lieu ou ils poussent, ce qui explique pourquoi on obtient des nanotubes alignés.

Après réaction les nanotubes contiennent encore des impuretés (principalement le métal de départ, fer ou nickel), qu'il faut éliminer. On " recuit " donc les nanotubes (sous atmosphère de gaz inerte, car la présence de dioxygène détruirait les nanotubes), ce qui a pour effet d'ouvrir les demi-fullrenènes aux extrémités, permettant aux impuretés de sortir. Cette re-cuisson présente aussi l'avantage de rendre les nanotubes encore plus rectilignes, en éliminant les éventuels défauts (partie d'une couche de graphène " cassée " ce qui fait que les différentes couches s'entrechoquent) [5].

Etat de la technologie

En juin 2005, des chercheurs du Nanotech Institute de l'université de Dallas (Texas, États-Unis d'Amérique) et de la Commonwealth Scientific and Industrial Research Organisation (Csiro, Australie) sous la houlette de Mei Zhang ont publié un article dans la revue Science indiquant qu'ils avaient mis au point une méthode permettant de produire un à sept mètres par minute de nanotubes de quelques centimètres de large et quelques dizaines de nanomètres d'épaisseur. Ce processus devrait permettre de faire tomber la principale barrière à la mise en application de cette matière qui pourra participer à l'émergence rapide de nouveaux produits finis.

En 2005, l'équipe de Ray Baughman de l'Université du Texas à Dallas aux États-Unis a publié une méthode permettant de produire jusqu'à dix mètres de nano-ruban par minute. Bien que l'on sache fabriquer des nano-rubans depuis quelques années, leur fabrication se révélait fastidieuse et longue.

Transparents, les nano-rubans ont d'autres propriétés assez spectaculaires. Après un simple lavage à l'éthanol, le ruban ne fait que 50 nanomètres d'épaisseur et un kilomètre carré ne pèse que 30 kilogrammes.

Cette production accélérée pourrait permettre d'utiliser les rubans de nanotube dans plusieurs domaines, comme dans l'industrie automobile (un ruban de nanotube sera coincé entre les vitres des voitures et en l'alimentant en courant, il les dégivrera) ou l'audiovisuel pour fabriquer des écrans enroulables.

Des recherches en cours étudient la possibilité de remplacer le filament d'ampoule, normalement en tungstène par un nano-ruban. À température égale, le filament en nanotube aurait un rendement lumineux supérieur à celle du tungstène car en plus de l'émission lumineuse dû à l'effet de corps noir se rajoute un effet de luminescence. Toutefois une commercialisation de ces ampoules n'est pas envisagée avant 2010.

Au mois d'avril 2007, des chercheurs de l'Université de Cincinnati aux USA ont annoncé avoir synthétisé des nanotubes de près de 2 cm de long, soit 900.000 fois leur section. Les chercheurs Vesselin Shanov et Mark Schulz, assistés du post-doc Yun Yeo Heung et de quelques étudiants ont utilisé la méthode de la déposition chimique de couches minces de matériaux par vapeur, dans un fourneau appelé "EasyTube 3000". Selon les chercheurs, ce n'est qu'un début.

Problèmes

Les nanotubes de carbone sont très intéressants relativement à leurs propriétés assez exceptionnelles. Cependant plusieurs problèmes se posent:

  • D'une part leur coût. Si de plus en plus d'entreprises se mettent à fabriquer des nanotubes, les procédés sont encore relativement coûteux, rendant l'utilisation " industrielle " des nanotubes prohibitive.
  • les nanotubes, comme d'autres nanomolécules, présentent des risques de pollution nanométrique.

Applications

Propriétés physiques

Grâce à leurs propriétés physiques, les nanotubes de carbones sont susceptibles à l'avenir d'être utilisés dans de nombreux domaines, notamment:

  • dans les vêtements : possibilité de faire des vêtements (normaux) plus résistants et imperméables ou dans la confection de gilets pare-balles. Il serait également possible de créer des vêtements autonettoyants.
  • dans les polyéthylènes: des chercheurs ont découvert qu'en mettant des nanotubes dans du polyéthylène celui-ci devenait jusqu'à 30% plus élastique.
  • dans certains équipements sportifs pour remplacer la fibre de carbone (raquettes de tennis, vélos, kayaks ...)
  • dans le stockage de l'hydrogène (par absorption), notamment dans le cadre des piles à combustibles

Ou encore dans un domaine qui relève actuellement de la science-fiction, la construction d'un ascenseur spatial.

Propriétés chimiques

Il s'agit ici d'exploiter la cavité protectrice que forme le nanotube de carbone.

  • réservoirs à hydrogène (contenant ce dernier à l'état gazeux ou sous forme d'hydrure métallique), de façon à stocker celui-ci de façon plus efficace qu'actuellement (en bouteille).
  • dans les disques durs : ils serviraient de réservoirs de lubrifiant, celui-ci étant détruit par les têtes d'écriture laser [6]
  • Le 19 mai 2006, des chercheurs de l'université de Berkeley et de Livemoer, en Californie, ont trouvé une nouvelle application pour les nanotubes : ils pourraient servir à séparer différents gaz ou liquides. En effet, ces chercheurs ont démontré que les molécules passaient bien plus facilement à travers ces tubes que dans d'autres pores de taille équivalente.

Nanotubes à base d'autres composants

Nitrure de bore

En 1994, l'École polytechnique de France a réussi à produire des nanotubes à partir de nitrure de bore. Leurs propriétés sont encore imprécises, mais on sait pour l'instant qu'ils sont un isolant électrique, qu'ils pourraient avoir des propriétés de conduction de la lumière, ce qui pourrait les rendre utiles en optronique, et des propriétés d'émission de champs.

Autres

Des nanotubes ont été produits à partir d'autres composés chimiques :

  • Sulfures (molybdène, tungstène, cuivre)
  • Halogénures (chlorure de nickel, chlorure de cadmium, iodure de cadmium)

Notes et références

  1. mesure du déplacement des électrons sous l'effet du champ électrique; elle s'exprime en cm².V-1.s-1
  2. (fr) Motorola met des nanotubes dans ses écrans
  3. (en) Mechanical properties of carbon nanotubes with vacancies and related defects  [pdf]
  4. Ce procédé est utilisé par la société Nanoledge basée à Montpellier.
  5. Cette méthode est notamment utilisée par le Laboratoire Francis Perrin.
  6. (fr) Seagate veut utiliser des nanotubes dans ses disques durs
Page générée en 0.508 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise