Inéquation du second degré - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs est disponible ici.
image:icone_math_élém.jpg
Cet article fait partie de la série
Mathématiques élémentaires
Algèbre
Analyse
Arithmétique
Géométrie
Logique
Probabilité
Statistique

Une inéquation du second degré est une inéquation qui peut, à l'aide d'opérations élémentaires, se mettre sous la forme ax^2 + bx + c > 0 \mbox{ ou } ax^2 + bx + c \geq 0a est un réel non nul

Résolution

Pour résoudre une telle inéquation, il faut étudier le signe de ax2 + bx + c.

Il faut commencer par déterminer les racines réelles de ax2 + bx + c. Les racines réelles sont les solutions réelles de l'équation du second degré ax2 + bx + c = 0. On distingue trois cas de figure

  • aucune racine
  • une racine double (-b/2a)
  • deux racines (x1 et x2).

L'étude du signe peut se faire par factorisation de l'expression du second degré et tableau de signe.

Ou bien, on peut utiliser les observations graphiques suivantes :

Image:trois paraboles(1).png

Position d'une parabole par rapport à l'axe des x pour a > 0, selon le nombre de racines.

Image:trois paraboles(2).png

Position d'une parabole par rapport à l'axe des x pour a < 0, selon le nombre de racines.

De ces observations, on peut tirer la règle suivante :

le polynôme ax2 + bx + c est du signe de a sauf entre les racines.

Exemples

  • x2 − 2x + 5 a pour discriminant - 16, il ne possède pas de racine. le coefficient devant x² est 1, il est positif. Donc x2 − 2x + 5 est toujours positif.
  • 50 − 2x2 possède deux racines 5 et - 5. Le coefficient devant x² est - 2, il est négatif donc 50 − 2x2 est négatif sauf entre - 5 et 5. On peut alors résumer l'étude de signe dans un tableau de signes.
valeurs de x
-\infty - 5 + 5 +\infty
signe de 50 - 2x²
- 0 + 0 -

Exemples d'inéquations

  • 1) Pour un périmètre de 12 cm, quelles sont les dimensions du rectangle tel que l'aire soit supérieure à 5 cm² ?
On appelle x, une des dimensions du rectangle. Puisque le demi-périmètre est 6 cm alors l'autre dimension est 6 - x. L'aire du rectangle est donc x(6 - x). le problème revient à résoudre, dans l'intervalle [0 ; 6], l'inéquation x(6 − x) > 5. cette inéquation est successivement équivalent à
x2 + 6x > 5 on a développé et ordonné le premier membre
x2 + 6x − 5 > 0 on a retranché 5 à chaque membre de l'inégalité
Le polynôme x2 + 6x − 5 possède deux racines (discriminant = 16, racines = 1 et 5. Le coefficient devant x est -1, il est négatif donc le polynôme est négatif sauf entre 1 et 5. On souhaite que le polynôme soit strictement positif, il faut donc prendre x dans l'intervalle ]1 ; 5[
  • 2) Résoudre, dans ]0 ; 6[, l'inéquation x(6 - x) \leq 2x - 5.
L'inéquation est équivalente à 0 \leq x^2 - 4x - 5. Ce polynôme possède deux racines -1 et 5. Le coeficient devant x² est positif. Le polynôme est positif sauf entre - 1 et 5. L'ensemble des solutions est donc l'intervalle [5 ; 6[.
  • 3) Résoudre, dans R, l'inéquation 2x2 + 25 > 0
Le polynôme 2x2 + 25 ne possède pas de racine, son coefficient devant x² est 2, il est positif. Le polynôme est donc toujours strictement positif quelle que soit la valeur de x. L'ensemble des solutions est donc R.
  • 4) Résoudre, dans R, l'inéquation x^2 + 25 \leq 0 .
Le polynôme n'admet pas de racine, le coefficient devant x² est positif, le polynôme est donc toujours positif, il n'est jamais négatif. L'ensemble des solutions est vide.
  • 5) Résoudre, dans R, l'inéquation (x + 5)2 > 0 .
Le polynôme admet une racine double (- 5). Le coefficient devant x² est positif, donc le polynôme est positif sauf en - 5 où il s'annule. L'ensemble des solutions est donc ]-\infty; -5[ \cup ]-5 ; + \infty[
Page générée en 0.528 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise