Bonjour,
J'aimerais démontrer la limite de Betz mais je ne suis pas sûr de ce que j'ai..
En prenant comme notation :
Ve : la vitesse en amont de l'hélice
Vs : la vitesse en aval de l'hélice
V : la vitesse au niveau de l'hélice
V+ : la vitesse juste avant l'hélice
V- : la vitesse juste après l'hélice
P : la pression
P+ : la pression juste avant l'hélice
P- : la pression juste après l'hélice
Rhö la masse volumique
En supposant :
-fluide incompressible
-écoulement parfait et stationnaire
-champ de pesanteur négligeable
-régime permanent
On peut écrire (Th. de Bernoulli) :
P + Rhô.Ve^2 / 2 = P+ + Rhô.V+^2 / 2
P + Rhô.Vs^2 / 2 = P- + Rhô.V-^2 / 2
Et à la limite on a : V+=V-=V
Donc : P+ - P- = Rhô/2 * (Vs^2 - Ve^2)
Un bilan de quantité de mouvement donne :
dP/dt = F = Dm*(Vs-Ve)
De là, j'aimerais :
1) déduire que V = (Ve + Vs) /2
2) Trouver la limite de Betz
Sur Wikipédia ils écrivent :
-F + (P+ - P-)*S = 0 => V = (Vs+Ve)/2
Après par contre je ne comprends pas très bien..
Merci
Limite de Betz
Modérateur : Modérateurs