Magnétosphère de Jupiter - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Dynamiques

Corotation et courants radiaux

Le champ magnétique de Jupiter et sa pression magnétique sur le plasma.
1 : Aurore
2 : Io
3 : Europe
4 : Ganymède
5 : Callisto
6 : Tore ionien
7 : Nappe de courant
8 : Courant direct
9 : Courant radial
10 : Courant de retour

Le principal moteur de la magnétosphère de Jupiter est la rotation de la planète. À cet égard, Jupiter est similaire au générateur unipolaire. Quand Jupiter tourne, sa ionosphère se déplace relativement au champ magnétique dipolaire de la planète. Étant donné que le moment magnétique dipolaire pointe dans le sens de la rotation, la force de Lorentz, induite par ce mouvement, dirige les électrons chargés négativement vers les pôles tandis que les ions chargés positivement sont poussés vers l'équateur. En conséquence, les pôles se chargent négativement et les régions proches de l'équateur se chargent positivement. Comme la magnétosphère de Jupiter est remplie d'un plasma fortement conducteur, à travers lui, le circuit électrique est fermé. Un courant, appelé le courant continu, coule le long des lignes de champ magnétique de l'ionosphère vers la couche de plasma équatorial. Ce courant circule alors radialement loin de la planète au sein de la couche de plasma équatorial et revient dans l'ionosphère aux confins de la magnétosphère, le long des lignes de champ reliées aux pôles. Les courants qui circulent le long des lignes de champ magnétique sont généralement appelés courants alignés ou courants de Birkeland. Le courant radial interagit avec le champ magnétique planétaire et la force de Lorentz qui en résulte accélère le plasma de la magnétosphère dans le sens de rotation de la planète. C'est le principal mécanisme qui maintient la co-rotation du plasma dans la magnétosphère de Jupiter.

Le courant qui circule de l'ionosphère vers la couche de plasma est particulièrement fort lorsque la partie correspondante de la couche de plasma tourne plus lentement que la planète. Comme mentionné ci-dessus, la co-rotation s'atténue très fortement dans la région située entre 20 et 40 Rj de Jupiter. Cette région correspond au magnéto-disque où le champ magnétique est très distendu. Les forts courants circulant dans le magnéto-disque sont originaires d'une zone latitudinale très limitée d'environ 16° ± 1° autour des pôles magnétiques de Jupiter. Ces régions étroites et circulaires correspondent à l'aurore ovale (voir ci-dessous). Le courant qui revient s'écoule à partir de la magnétosphère externe au-delà de 50 Rj et pénètre dans l'ionosphère de Jupiter près des pôles, fermant le circuit électrique. Le courant radial total dans la magnétosphère de Jupiter est estimé de 60 à 140 millions d'ampères.

L'accélération du plasma dans la co-rotation provoque un transfert d'énergie de la rotation de Jupiter vers l'énergie cinétique du plasma. En ce sens, la magnétosphère de Jupiter est impulsée par la rotation de la planète, alors que la magnétosphère terrestre est alimentée principalement par le vent solaire.

Instabilité d'interface et reconnexion

La principale difficulté rencontrée pour comprendre la dynamique de la magnétosphère jovienne est le transport de plasma froid et lourd depuis le tore situé à Rj jusqu'à l'extérieur de la magnétosphère à plus de 50 Rj. Le processus précis n'est pas connu mais l'hypothèse la plus souvent retenue est que ce phénomène est dû à l'instabilité des interfaces d'échange du plasma. Le processus serait similaire à l'instabilité de Rayleigh-Taylor en dynamique des fluides. Dans le cas de la magnétosphère jovienne, les forces centrifuges jouent le rôle de la gravité ; le liquide lourd et froid est le plasma jovien dense (issu de Io), et le liquide léger et chaud est le plasma beaucoup moins dense de la magnétosphère externe. L'instabilité conduit à un échange entre les parties extérieure et intérieure de la magnétosphère du tube de flux rempli de plasma. La dynamique fait progresser les tubes vides de flux vers la planète, tout en repoussant les tubes lourds, remplis avec le plasma ionien, loin de Jupiter. Cet échange de tubes de flux est une forme de la turbulence magnétosphérique.

La magnétosphère de Jupiter vue depuis son pôle nord

Cet hypothétique échange de tube de flux fut partiellement confirmé par la sonde Galileo qui détecta des régions ayant une densité fortement réduite de plasma et une force accrue dans la magnétosphère intérieure. Ces vides peuvent correspondre aux tubes de flux quasi-vide en provenance de la magnétosphère externe. Dans la magnétosphère moyenne, Galileo a détecté des événements dits d'injection qui se produisent quand du plasma chaud issu des couches externes impacte le magnéto-disque, conduisant à une augmentation du flux de particules énergétiques et à un champ magnétique renforcé. Aucun mécanisme n'est actuellement capable d'expliquer le transport, vers les couches extérieures, du plasma froid issu de Io.

Quand les tubes de flux chargés avec du plasma ionien froid atteignent la magnétosphère extérieure, ils passent par un processus de reconnexion qui sépare le champ magnétique du plasma. Le champ magnétique revient vers la magnétosphère interne sous la forme de tubes de flux remplis de plasma chaud et moins dense, alors que le plasma froid est probablement éjecté par la magnéto-queue sous la forme de plasmoïdes. Les processus de reconnexion peuvent être à la source des événements de reconfiguration globaux également observés par la sonde Galileo et qui ont lieu régulièrement tous les 2 ou 3 jours. Ces événements de reconfiguration incluent habituellement des variations rapides et chaotiques de l'intensité du champ magnétique et de sa direction, ainsi que des changements abrupts dans le mouvement du plasma qui arrête alors de suivre le mouvement co-rotatif et commence à s'écouler vers l'extérieur. Ils ont été principalement observés dans le secteur de l'aube de la magnétosphère nocturne. Le plasma qui s'écoule dans la queue le long des lignes de champs ouvertes est appelé le vent de la planète.

Les évènements de reconnexion sont analogues aux orages magnétiques dans la magnétosphère terrestre. La différence semble être leurs sources d'énergie respectives : les sous-orages terrestres nécessitent un stockage de l'énergie du vent solaire dans la magnétosphère suivi de sa libération à travers un événement de reconnexion dans la feuille de courant neutre de la queue. Celui-ci crée également un plasmoïde qui descend le long de la queue. A contrario, dans la magnétosphère de Jupiter, l'énergie de rotation qui est stockée dans le magnéto-disque est libérée lorsqu'un plasmoïde s'en détache.

Influence du vent solaire

Bien que la dynamique de la magnétosphère jovienne dépende principalement de sources d'énergie internes, le vent solaire a probablement aussi un rôle, particulièrement en tant que source de protons de haute énergie. La structure de la magnétosphère externe reproduit quelques caractéristiques de la magnétosphère solaire pilotée par les vents, incluant une asymétrie significative entre l'aube et l'aurore. En particulier, les lignes de champs magnétiques dans le secteur du crépuscule couchant sont courbées dans la direction opposée à celles du secteur de l'aurore naissante. De plus, la magnétosphère du côté de l'aube contient des lignes de champs ouvertes, connectées à la magnéto-queue, là où du côté du crépuscule de la magnétosphère les lignes de champs sont fermées sur elles-mêmes. Toutes ces observations indiquent qu'un processus de reconnexion piloté par les vents solaires peut aussi prendre place dans la magnétosphère jovienne.

L'étendue de l'influence du vent solaire sur la dynamique de la magnétosphère de Jupiter est inconnue au début du XXIe siècle. Néanmoins, il peut être particulièrement fort lors d'activités solaires intenses. Les émissions radio et optiques jusque dans le spectre des ultraviolets de l'aurore, ainsi que les émissions de synchrotrons depuis la ceinture de radiation, montrent toutes des corrélations avec la pression du vent solaire, indiquant qu'il pourrait piloter la circulation du plasma ou moduler le processus interne de la magnétosphère.

Page générée en 0.292 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise