Grâce au Very Large Telescope de l'Observatoire Européen Austral (VLT de l'ESO), des astronomes ont découvert l'élément le plus lourd jamais trouvé dans l'atmosphère d'une exoplanète: le baryum. Ils ont été surpris de découvrir du baryum à haute altitude dans l'atmosphère des géantes gazeuses ultra-chaudes WASP-76 b et WASP-121 b - deux exoplanètes, c'est à dire des planètes qui orbitent autour d'étoiles en dehors de notre système solaire. Cette découverte inattendue soulève des questions sur la nature de ces atmosphères exotiques.
Vue d'artiste d'un Jupiter ultra-chaude transitant devant son étoile. Crédit: ESO/M. Kornmesser
"Ce qui est curieux et contre-intuitif, c'est de comprendre pourquoi il y a un élément aussi lourd dans les couches supérieures de l'atmosphère de ces planètes", explique Tomás Azevedo Silva, doctorant à l'université de Porto et à l'Instituto de Astrofísica e Ciências do Espaço (IA) au Portugal, qui a dirigé l'étude publiée aujourd'hui dans Astronomy & Astrophysics.
WASP-76 b et WASP-121 b ne sont pas des exoplanètes ordinaires. Elles sont toutes deux connues sous le nom de Jupiters ultra-chauds, car leur taille est comparable à celle de Jupiter, mais leur température de surface est extrêmement élevée, dépassant les 1 000 °C. Cela est dû à la proximité de leur étoile hôte, ce qui signifie également qu'une orbite autour de chaque étoile ne dure qu'un à deux jours. Cela donne à ces planètes des caractéristiques plutôt exotiques ; dans le cas de WASP-76 b, par exemple, les astronomes soupçonnent qu'il y pleut du fer.
Mais même ainsi, les scientifiques ont été surpris de trouver du baryum, qui est 2,5 fois plus lourd que le fer, dans les couches supérieures de l'atmosphère de WASP-76 b et WASP-121 b. "Étant donné la forte gravité des planètes, nous nous attendrions à ce que les éléments lourds comme le baryum tombent rapidement dans les couches inférieures de l'atmosphère", explique le co-auteur Olivier Demangeon, un chercheur également de l'Université de Porto et de l'IA.
"Il s'agissait en quelque sorte d'une découverte "accidentelle", précise Tomás Azevedo Silva. "Nous ne nous attendions pas ou ne cherchions pas de baryum en particulier et nous avons dû vérifier par recoupement que cela provenait bien de la planète, car cela n'avait jamais été vu dans aucune exoplanète auparavant."
Le fait que du baryum ait été détecté dans l'atmosphère de ces deux Jupiters ultra chauds suggère que cette catégorie de planètes pourrait être encore plus étrange qu'on ne le pensait. Bien que nous voyions occasionnellement du baryum dans notre propre ciel, comme la couleur verte brillante des feux d'artifice, la question pour les scientifiques est de savoir quel processus naturel pourrait provoquer la présence de cet élément lourd à des altitudes aussi élevées dans ces exoplanètes. "Pour l'instant, nous ne sommes pas sûrs des mécanismes en jeu", explique Olivier Demangeon.
Cette illustration représente la face nocturne de l'exoplanète WASP-76b. La face éclairée de cette exoplanète géante et ultra-chaude voit sa température grimper au-delà des 2400 degrés Celsius, ce qui suffit à vaporiser les métaux. De forts vents charrient la vapeur de fer vers la face nocturne de moindre température où elle se condense en gouttelettes de fer. A gauche de l'image figure la frontière du soir, où s'effectue la transition jour-nuit à la surface de l'exoplanète. Crédit: ESO/M. Kornmesser
Dans l'étude des atmosphères des exoplanètes, les Jupiters ultra chauds sont extrêmement utiles. Comme l'explique Olivier Demangeon: "Étant gazeuses et chaudes, leurs atmosphères sont très étendues et sont donc plus faciles à observer et à étudier que celles des planètes plus petites ou plus froides".
La détermination de la composition de l'atmosphère d'une exoplanète nécessite un équipement très spécialisé. L'équipe a utilisé l'instrument ESPRESSO sur le VLT de l'ESO au Chili pour analyser la lumière des étoiles qui avait été filtrée à travers les atmosphères de WASP-76 b et WASP-121 b. Cela a permis de détecter clairement plusieurs éléments dans celles-ci, dont le baryum.
Ces nouveaux résultats montrent que nous n'avons fait qu'effleurer la surface des mystères des exoplanètes. Grâce à de futurs instruments, tels que le spectrographe ANDES (ArmazoNes high Dispersion Echelle Spectrograph), qui fonctionnera sur le futur Extremely Large Telescope (ELT) de l'ESO, les astronomes pourront étudier les atmosphères des exoplanètes, grandes et petites, y compris celles des planètes rocheuses semblables à la Terre, de manière beaucoup plus approfondie et recueillir davantage d'indices sur la nature de ces mondes étranges.