L'intelligence artificielle au service de la photonique ultrarapide

Publié par Redbran le 19/03/2021 à 13:00
Source: CNRS INSIS
...
Restez toujours informé: suivez-nous sur Google Actualités (icone ☆)

Les lasers et les dispositifs photoniques ultrarapides sont des systèmes dynamiques complexes difficiles à modéliser. Les techniques d'apprentissage automatique sont une voie prometteuse pour accélérer et améliorer leur conception. Des chercheurs de l'institut FEMTO-ST, au sein d'une équipe internationale, ont publié dans la revue Nature Photonics un article de synthèse sur les dernières avancées dans ce domaine.

Les lasers ultrarapides, qui délivrent des impulsions ultracourtes de quelques picosecondes (10-12 s) ou femtosecondes (10-15 s), sont utilisés dans les télécommunications (Les télécommunications sont aujourd’hui définies comme la transmission à distance...), l'imagerie biologique, l'industrie, ou encore le médical. La conception de ces systèmes photoniques, complexes et non-linéaires, repose la plupart du temps sur des simulations numériques et des essais qui conduisent à des compromis ou des limitations de performances.

Pour dépasser ces limites, alors que les applications de la photonique exige des performances stables et parfaitement adaptées, plusieurs équipes de recherche dans le monde explorent une nouvelle voie, fondée sur des techniques d'intelligence artificielle (L'intelligence artificielle ou informatique cognitive est la « recherche de moyens...), plus précisément sur l'apprentissage automatique (L'apprentissage automatique (machine-learning en anglais) est une discipline scientifique, qui est...) (machine learning). Un groupe international de scientifiques, qui comprend des chercheurs de l'institut FEMTO-ST (CNRS/Université Bourgogne Franche-Comté), a publié un article de synthèse (review) qui donne un aperçu complet de la manière dont l'apprentissage (L’apprentissage est l'acquisition de savoir-faire, c'est-à-dire le processus...) automatique (L'automatique fait partie des sciences de l'ingénieur. Cette discipline traite de la...) peut révolutionner le développement des sources laser et des systèmes photoniques ultrarapides.

Le fonctionnement d'un dispositif photonique ultrarapide dépend d'un grand nombre de paramètres, ce qui rend difficile sa simulation à partir d'un modèle physique. Les techniques d'apprentissage automatique, qui identifient directement des motifs cohérents dans de grandes quantités de données, permettent d'extraire automatiquement les jeux de paramètres qui produisent les modes de fonctionnement et les performances visées.

Ainsi, l'article de synthèse rédigé par l'équipe internationale montre comment des algorithmes d'apprentissage automatique (algorithmes génétiques) ont été utilisés pour concevoir des sources laser ultrarapides dont les caractéristiques sont déterminées en fonction du mode de fonctionnement souhaité. D'autres algorithmes - des réseaux de neurones- facilitent la mise en forme de l'impulsion (compression, génération de formes d'impulsions arbitraires) en sortie de la cavité laser pour l'adapter à l'application. Enfin, les techniques d'apprentissage automatique permettent aussi d'analyser les phénomènes physiques afin d'identifier les paramètres clés, et constituent ainsi une aide à la construction de modèles. Les études dans ces domaines sont en plein développement, et, selon les auteurs, devraient maintenant explorer d'autres techniques d'apprentissage automatique, ainsi que la combinaison de plusieurs techniques utilisées jusqu'ici séparément.

L'équipe de FEMTO-ST, en collaboration avec l'université de Tampere (Finlande), a également publié, dans la revue Nature Machine Intelligence, ses propres travaux très récents, montrant comment un réseau de neurones récurrents peut prédire le comportement dynamique (Le mot dynamique est souvent employé désigner ou qualifier ce qui est relatif au mouvement. Il...) d'impulsions laser ultracourtes dans une fibre optique (Une fibre optique est un fil en verre ou en plastique très fin qui a la propriété de...). Cette méthode permet d'optimiser la propagation de l'impulsion en vue de l'application. L'étude a démontré l'efficacité des techniques d'apprentissage automatique appliquées à la compression d'impulsions, et à la génération de supercontinuum (source laser à très large spectre). Là encore, l'aide de l'intelligence artificielle évite d'avoir à résoudre des modèles mathématiques (Les mathématiques constituent un domaine de connaissances abstraites construites à l'aide...) complexes, nécessitant des ressources informatiques parfois prohibitives.


Parmi les applications de l'intelligence artificielle en photonique figure l'utilisation d'un réseau de neurones pour identifier et classer les pics d'intensité temporelle extrêmes issus des dynamiques non linéaires, en se basant uniquement sur des mesures spectrales.
© G. Genty

Références:
Machine learning and applications in ultrafast photonics
G. Genty, L. Salmela, J. M. Dudley, D. Brunner, A. Kokhanovskiy, S. Kobtsev & S. K. Turitsyn.
Nature Photonics (2020)
https://doi.org/10.1038/s41566-020-00716-4

Predicting ultrafast nonlinear dynamics in fibre optics with a recurrent neural network
L. Salmela, N. Tsipinakis, A. Foi, C. Billet, J. M. Dudley & G. Genty.
Nature Machine Intelligence (2021)
https://www.nature.com/articles/s42256-021-00297-z

Pour en savoir plus:
- Découvrez le portrait de John Dudley, médaille d'argent du CNRS 2013.

Contacts:
- John Dudley - Enseignant-chercheur de l'Université Franche-Comté et de l'Institut Franche-Comté électronique mécanique thermique (La thermique est la science qui traite de la production d'énergie, de l'utilisation de...) et optique - sciences et technologies (FEMTO-ST, CNRS/ COMUE UBFC) - john.dudley at univ-fcomte.fr
- Communication INSIS - insis.communication at cnrs.fr

Notes:
1. Les autres laboratoires signataires de l'article sont: Laboratory of Photonics, Tampere University, Tampere, Finland ; Division of Laser Physics & Innovative Technologies, Novosibirsk State University, Novosibirsk, Russia ; Aston Institute of Photonic Technologies, Aston University, Birmingham, UK
2. L'apprentissage automatique (machine learning), fondé sur des techniques statistiques et des algorithmes, permet de réaliser des tâches sans programmation (La programmation dans le domaine informatique est l'ensemble des activités qui permettent...) explicite: la machine apprend automatiquement à les réaliser à partir de données et d'exemples. Cette méthode se révèle particulièrement efficace dans des tâches de classification, de reconnaissance de motifs, de prédiction, d'optimisation de paramètres, et de construction d'un modèle d'un système dynamique (En mathématiques, en physique théorique et en ingénierie, un système dynamique...) complexe à partir des données observées. L'apprentissage automatique est utilisé pour des applications telles que le contrôle (Le mot contrôle peut avoir plusieurs sens. Il peut être employé comme synonyme d'examen, de...), le traitement de la parole, la vision artificielle, les neurosciences (Les neurosciences correspondent à l'ensemble de toutes les disciplines biologiques et...)...
3. Un réseau de neurones récurrents dispose de sa mémoire interne, ce qui lui permet de modéliser des séquences temporelles, et notamment des comportements dynamiques.
Page générée en 0.636 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique