Constante trigonométrique exacte - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Introduction

En mathématiques, les expressions de constantes exactes pour les expressions trigonométriques sont parfois très utiles, principalement pour la simplification des solutions en radicaux qui permettent des simplifications supplémentaires.

Toutes les valeurs de sinus, cosinus et tangente d'angles d'incrément de 3° sont dérivables en utilisant les identités : demi-angle, Double-angle, Addition/soustraction ainsi que les valeurs pour 0°, 30°, 36° et 45°. Note : 1° = \frac{\pi}{180}\, radians.

Cet article est incomplet dans au moins deux sens. D'abord, il est toujours possible d'appliquer la formule du demi-angle et trouver une expression exacte pour le cosinus d'un demi du plus petit angle de la liste. Ensuite, cet article exploite seulement les deux premiers des cinq nombres premiers de Fermat connu : 3 et 5. On pouvait en principe noter des formules impliquant les angles \frac{2\pi}{17}\, , \frac{2\pi}{257}\, , ou \frac{2\pi}{65537}\, , mais elles auraient été trop difficiles à manier pour la plupart des applications. En pratique, toutes les valeurs de sinus, cosinus et tangente absentes dans cet article sont approximées en utilisant les techniques décrites dans l'article Construire des tables trigonométriques.

Table des constantes

Les valeurs en dehors des angles 0° ... 45° sont trivialement extraites des axes du cercle unité par réflexion symétrie à partir de ces valeurs. (Voir Identité trigonométrique)

0° Fondamental

\sin 0^\circ = 0
\cos 0^\circ = 1
\tan 0^\circ = 0

3° - Polygone à 60 côtés

\sin \frac {\pi}{60} = \sin 3^\circ = \frac{ 2 (1 - \sqrt3) \sqrt{5 + \sqrt5} + \sqrt2 (\sqrt5 - 1) (\sqrt3 + 1) }{16}
\cos \frac {\pi}{60} = \cos 3^\circ = \frac{ 2 (1 + \sqrt3) \sqrt{5 + \sqrt5} + \sqrt2 (\sqrt5 - 1) (\sqrt3 - 1) }{16}
\tan \frac {\pi}{60} = \tan 3^\circ = \frac{ \left( (2 - \sqrt3) (3 + \sqrt5) - 2 \right) \left(2 - \sqrt{2 (5 - \sqrt5)}\right) }{4}

6° - Polygone à 30 côtés

\sin \frac {\pi}{30} = \sin 6^\circ = \frac{(\sqrt6) \sqrt{5 - \sqrt5} - (\sqrt5 + 1)}{8}
\cos \frac {\pi}{30} = \cos 6^\circ = \frac{(\sqrt2) \sqrt{5- \sqrt5} + \sqrt3( \sqrt5+1)}{8}
\tan \frac {\pi}{30} = \tan 6^\circ = \frac{(\sqrt2) \sqrt{5 - \sqrt5} - \sqrt3(\sqrt5 - 1)}{2}
\cot \frac {\pi}{30} = \cot 6^\circ = \frac{\sqrt3 (3 + \sqrt5) + \sqrt{50 + 22 \sqrt5}}{2}

9° - Polygone à 20 côtés

\sin \frac {\pi}{20} = \sin 9^\circ = \frac{\sqrt2(\sqrt5 + 1) - 2\sqrt{5 - \sqrt5}}{8}
\cos \frac {\pi}{20} = \cos 9^\circ = \frac{\sqrt2(\sqrt5 + 1) + 2\sqrt{5 - \sqrt5}}{8}
\tan \frac {\pi}{20} = \tan 9^\circ = \sqrt5 + 1 - \sqrt{5 + 2\sqrt5}
\cot \frac {\pi}{20} = \cot 9^\circ = \sqrt5 + 1 + \sqrt{5 + 2\sqrt5}

12° - Polygone à 15 côtés

\sin \frac{\pi}{15} = \sin 12^\circ = \frac{(\sqrt2) \sqrt{5 + \sqrt5} - \sqrt 3 (\sqrt 5 -1)}{8}
\cos \frac{\pi}{15} = \cos 12^\circ = \frac{(\sqrt6) \sqrt{5 + \sqrt5} + (\sqrt 5 - 1)}{8}
\tan \frac{\pi}{15} = \tan 12^\circ = \frac{(\sqrt3) (3 - \sqrt5 ) - \sqrt{50 - 22 \sqrt5}}{2}
\cot \frac{\pi}{15} = \cot 12^\circ = \frac{\sqrt3 (\sqrt5 + 1) + \sqrt2 \sqrt{5 + \sqrt5}}{2}

15° - Polygone à 12 côtés

\sin \frac{\pi}{12} = \sin 15^\circ = \frac{\sqrt 2 \left(\sqrt 3 - 1\right)}{4}
\cos \frac{\pi}{12} = \cos 15^\circ = \frac{\sqrt 2 \left(\sqrt 3 + 1\right)}{4}
\tan \frac{\pi}{12} = \tan 15^\circ = 2 - \sqrt 3
\cot \frac{\pi}{12} = \cot 15^\circ = 2 + \sqrt 3

18° - Polygone à 10 côtés

\sin \frac{\pi}{10} = \sin 18^\circ = \frac{\sqrt 5 - 1}{4}
\cos \frac{\pi}{10} = \cos 18^\circ = \frac{\sqrt{2(5 + \sqrt 5)}}{4}
\tan \frac{\pi}{10} = \tan 18^\circ = \frac{\sqrt{5(5 - 2 \sqrt 5)}}{5}
\cot \frac{\pi}{10} = \cot 18^\circ = \sqrt{5 + 2 \sqrt 5}

20° - Ennéagone

\sin\frac{\pi}{9}=\sin 20^\circ=\sqrt[3]{-\frac{\sqrt{3}}{16}+\sqrt{-\frac{1}{256}}}+\sqrt[3]{-\frac{\sqrt{3}}{16}-\sqrt{-\frac{1}{256}}}=
2^{-\frac{4}{3}}(\sqrt[3]{i-\sqrt{3}}-\sqrt[3]{i+\sqrt{3}})
\cos\frac{\pi}{9}=\cos 20^\circ=
2^{-\frac{4}{3}}(\sqrt[3]{1+i\sqrt{3}}+\sqrt[3]{1-i\sqrt{3}})

21° - Somme 9° + 12°

\sin \frac{7\pi}{60} = \sin 21^\circ = \frac{2(\sqrt 3 + 1) \sqrt{5 - \sqrt 5} - \sqrt 2 (\sqrt 3 - 1) (1 + \sqrt 5)} {16}\,
\cos \frac{7\pi}{60} = \cos 21^\circ = \frac{2 (\sqrt 3 - 1) \sqrt{5 - \sqrt 5} + \sqrt 2 (\sqrt 3 + 1) (1 + \sqrt 5)} {16}\,
\tan \frac{7\pi}{60} = \tan 21^\circ = \frac{(1 + 2 \sqrt 3 - \sqrt 5) \sqrt{5 - 2 \sqrt 5} + (2 + \sqrt 3)(\sqrt 5 - 3) + 2} {2}\,

22,5° - Octogone

\sin \frac {\pi}{8} = \sin 22.5^\circ = \frac{\sqrt{2 - \sqrt{2}}}{2}
\cos \frac {\pi}{8} = \cos 22.5^\circ = \frac{\sqrt{2 + \sqrt{2}}}{2}
\tan \frac {\pi}{8} = \tan 22.5^\circ = \sqrt{2}-1
\cot \frac {\pi}{8} = \cot 22.5^\circ = \sqrt{2}+1

24° - Somme 12° + 12°

\sin \frac {2\pi}{15} = \sin 24^\circ = \frac{\sqrt3(\sqrt5 + 1) - \sqrt2 \sqrt{5 - \sqrt5}}{8}
\cos \frac {2\pi}{15} = \cos 24^\circ = \frac{\sqrt6 \sqrt{5 - \sqrt5} + \sqrt5 + 1}{8}
\tan \frac {2\pi}{15} = \tan 24^\circ = \frac{\sqrt{50 + 22 \sqrt5} - \sqrt3 (3 + \sqrt5)}{2}
\cot \frac {2\pi}{15} = \cot 24^\circ = \frac{\sqrt2 \sqrt{5 - \sqrt5} + \sqrt3(\sqrt5 - 1)}{2}

27° - Somme 12° + 15°

\sin \frac {3\pi}{20} = \sin 27^\circ = \frac{2 \sqrt{5 + \sqrt5} - \sqrt2(\sqrt5 - 1)}{8}
\cos \frac {3\pi}{20} = \cos 27^\circ = \frac{2 \sqrt{5 + \sqrt5} + \sqrt2(\sqrt5 - 1)}{8}
\tan \frac {3\pi}{20} = \tan 27^\circ = \sqrt5 - 1 - \sqrt{5 - 2 \sqrt5}
\cot \frac {3\pi}{20} = \cot 27^\circ = \sqrt5 - 1 + \sqrt{5 - 2 \sqrt5}

30° - Hexagone

\sin \frac{\pi}{6} = \sin 30^\circ = \frac{1}{2}
\cos \frac{\pi}{6} = \cos 30^\circ = \frac{\sqrt 3}{2}
\tan \frac{\pi}{6} = \tan 30^\circ = \frac{\sqrt 3}{3}
\cot \frac{\pi}{6} = \cot 30^\circ = \frac{3}{\sqrt 3} = \sqrt 3

33° - Somme 15° + 18°

\sin \frac{11\pi}{60} = \sin 33^\circ = \frac{2(\sqrt 3 - 1) \sqrt{5 + \sqrt 5} + \sqrt 2 (\sqrt 3 + 1) (\sqrt 5 - 1)} {16}
\cos \frac{11\pi}{60} = \cos 33^\circ = \frac{2 (\sqrt 3 + 1) \sqrt{5 + \sqrt 5} + \sqrt 2 (1 - \sqrt 3) (\sqrt 5 - 1)} {16}
\tan \frac{11\pi}{60} = \tan 33^\circ = \frac {(-15 + 10\sqrt 3 - 7\sqrt 5 + 4\sqrt{15} )\sqrt{5(5 - 2 \sqrt 5)} + 5(\sqrt 3 - 2)(3 + \sqrt 5) + 10}{10}

36° - Pentagone

\sin \frac{\pi}{5} = \sin 36^\circ = \frac{\sqrt{2(5 - \sqrt 5)} }{4}
\cos \frac{\pi}{5} = \cos 36^\circ = \frac{\sqrt 5+1}{4}
\tan \frac{\pi}{5} = \tan 36^\circ =  \sqrt{5 - 2\sqrt 5}
\cot \frac{\pi}{5} = \cot 36^\circ = \frac{ \sqrt{5(5 + 2\sqrt 5)}}{5}

39° - Somme 18°+ 21°

\sin{\frac{13\pi}{60}} = \sin{39^\circ} = \frac{2(1-\sqrt 3)\sqrt{5-\sqrt 5} + \sqrt 2 (1 + \sqrt 3)(1 + \sqrt 5)}{16}
\cos{\frac{13\pi}{60}} = \cos{39^\circ} = \frac{2 (1+\sqrt 3)\sqrt{5-\sqrt 5} + \sqrt2(\sqrt 3 - 1)(\sqrt 5 + 1)}{16}
\tan{\frac{13\pi}{60}} = \tan{39^\circ} = \frac{\left(\sqrt{2(5+\sqrt 5)}-2\right)\left((2-\sqrt 3)(\sqrt 5 - 3) + 2\right)}{4}

42° - Somme 21° + 21°

\sin \frac {7\pi}{30} = \sin 42^\circ = \frac{ \sqrt6 \sqrt{5 + \sqrt5} - (\sqrt5 - 1)}{8}
\cos \frac {7\pi}{30} = \cos 42^\circ = \frac{ \sqrt2 \sqrt{5 + \sqrt5} + \sqrt3(\sqrt5 - 1)}{8}
\tan \frac {7\pi}{30} = \tan 42^\circ = \frac{ \sqrt3(\sqrt5 + 1) - \sqrt2 \sqrt{5 + \sqrt5}}{2}
\cot \frac {7\pi}{30} = \cot 42^\circ = \frac{ \sqrt{50 - 22 \sqrt5} + \sqrt3(3 + \sqrt5)}{2}

45° - Carré

\sin \frac{\pi}{4} = \sin 45^\circ = \frac{\sqrt 2}{2}
\cos \frac{\pi}{4} = \cos 45^\circ = \frac{\sqrt 2}{2}
\tan \frac{\pi}{4} = \tan 45^\circ = 1
\cot \frac{\pi}{4} = \cot 45^\circ = 1
Page générée en 0.199 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise