Angle - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Introduction

En géométrie, la notion générale d'angle se décline en plusieurs concepts apparentés.

Dans son sens ancien, l'angle est une figure plane, portion de plan délimitée par deux droites sécantes. C'est ainsi qu'on parle des angles d'un polygone. Cependant, l'usage est maintenant d'employer le terme « secteur angulaire » pour une telle figure. L'angle peut désigner également une portion de l'espace délimitée par deux plans (angle diédral). La mesure de tels angles porte couramment mais abusivement le nom d'angle elle aussi.

En un sens plus abstrait, l'angle est une classe d'équivalence, c'est-à-dire un ensemble obtenu en assimilant entre eux tous les angles-figures identifiables par isométrie. L'une quelconque des figures identifiées est alors appelée représentant de l'angle. Tous ces représentants ayant même mesure, on peut parler de mesure de l'angle abstrait.

Il est possible de définir une notion d'angle orienté en géométrie euclidienne du plan, ainsi que d'étendre la notion d'angle au cadre des espaces vectoriels préhilbertiens ou des variétés riemanniennes.

Le mot angle dérive du latin angulus, le coin.

L'angle comme figure du plan ou de l'espace

Secteur angulaire et angle

secteurs angulaires obtenus par intersection des demi-plans délimités par des droites sécantes

Un secteur angulaire est une figure plane obtenue par intersection ou réunion de deux demi-plans délimités par des droites sécantes ou confondues.

L'angle d'un secteur angulaire est le nombre réel positif qui mesure la proportion du plan occupée par le secteur angulaire. Les unités utilisées pour le quantifier sont le radian, le quadrant et ses subdivisions le degré, ses sous-unités et le grade. Les angles sont fréquemment notés par une lettre grecque minuscule, par exemple α, β, θ, ρ... Lorsque l'angle est au sommet d'un polygone et qu'il n'y a pas d'ambiguïté, on utilise alors le nom du sommet surmonté d'un chapeau, par exemple Â.

L'angle peut aussi s'interpréter comme l'ouverture du secteur angulaire, c'est-à-dire la « vitesse » à laquelle s'éloignent les droites l'une de l'autre lorsque l'on s'éloigne du point d'intersection. C'est la mesure de l'inclinaison d'une droite par rapport à l'autre.

Valeur d'un angle

Définition des angles par la proportion d'une portion de disque centré sur l'intersection des droites

Pour évaluer cet angle, cette « proportion de surface », on prend un disque centré au point d'intersection, et on effectue le rapport entre l'aire de la portion de disque interceptée par le secteur angulaire et l'aire totale du disque. On peut montrer que cela revient également à faire le rapport entre la longueur de l'arc intercepté et la circonférence du cercle ; cette valeur inférieure à 1 est appelée nombre de tour. La valeur 1/4 (quart de tour) correspond au quadrant.

Une unité couramment utilisée est le degré, qui consiste à subdiviser le quadrant en 90 parts égales. Le tour complet correspond donc à 360 degrés. La minute d'arc est un sous-multiple du degré, égale à 1/60 de degré. De même, la seconde d'arc est égale à 1/60 de la minute d'arc, soit 1/3600 de degré. On utilise plus rarement le grade, qui correspond à une subdivision centésimale du quadrant.

Définition du radian, unité de mesure de l'angle

L'unité internationale de mesure des angles est cependant le radian, défini comme le rapport entre la longueur de l'arc intercepté et le rayon du cercle. Le tour complet correspond donc à radians.

Les angles peuvent être calculés à partir des longueurs des côtés de polygones, notamment de triangles, en utilisant la trigonométrie.

Dans certains cas, les angles sont exprimés par leur tangente. Par exemple, une pente est exprimée en pourcent, c'est le nombre de mètres que l'on monte (ou descend) lorsque l'on parcourt 100 m par rapport à l'horizontale ; si α est l'angle entre la droite de plus grande pente et l'horizontale, alors la pente en % est égale à 100×tan(α). En vol à voile (aéronautique), la finesse d'une voile est le nombre de mètres dont on descend lorsque l'on a parcouru 100 m horizontalement (en absence de vent) ; il s'agit également de cent fois la tangente de la pente.

L'unité de mesure des angles utilisée principalement par les militaires est le millième. Il est l'angle sous lequel on voit 1 mètre à 1 kilomètre. 6283 millièmes correspond à 2π radians ou 360 degrés, soit 360 °/arctan(1 m/1000m)

« Sur le terrain », les angles peuvent être mesurés avec un appareil appelé goniomètre ; il comporte en général une règle courbe graduée en degrés, appelée rapporteur.

Nom des angles

Les angles correspondant à un nombre entier de quadrants portent un nom particulier

angle nombre de tour nombre de quadrants radians degré grade
angle plein 1 tour 4 quadrants 2π rad 360 ° 400 gr
angle plat 1/2 tour 2 quadrants π rad 180 ° 200 gr
angle droit 1/4 de tour 1 quadrant π/2 rad 90 ° 100 gr
angle nul 0 tour 0 quadrant 0 rad 0 ° 0 gr

L'angle droit est obtenu en considérant deux droites qui divisent le plan en quatre secteurs égaux. De telles droites sont dites « orthogonales » ou « perpendiculaires ».

Définition des angles droit, plat, complémentaires et supplémentaires

Les qualificatifs suivant sont employés pour les angles prenant des valeurs intermédiaires entre ces valeurs remarquables

  • l'angle rentrant est un angle supérieur à l'angle plat ;
  • l'angle saillant est un angle inférieur à l'angle plat ;
  • un angle saillant est obtus lorsqu'il est supérieur à l'angle droit ;
  • il est aigu lorsqu'il est inférieur à l'angle droit.

Pour qualifier les valeurs relatives de deux angles, on emploie les expressions suivantes :

  • deux angles sont complémentaires quand leur somme fait 90 ° ; si deux angles sont complémentaires, chacun est dit être le complément de l'autre ;
  • deux angles sont supplémentaires quand leur somme fait 180 °.

On emploie encore d'autres expressions pour qualifier la position des angles sur une figure, c'est-à-dire plus justement, la position relative de secteurs angulaires.

  • Deux secteurs angulaires sont opposés par le sommet, lorsqu'ils ont le même sommet et que les côtés de l'un sont dans le prolongement de ceux de l'autre. Dans ce cas les angles correspondants sont égaux.
  • Deux secteurs angulaires sont adjacents lorsqu'ils ont le même sommet, un côté commun, et que leur intersection est égale à ce côté commun. Les angles s'ajoutent lorsqu'on considère la réunion de ces secteurs.
  • Les angles alternes-externes et les angles alternes-internes sont formés par deux droites coupées par une sécante. Ces angles ont la même mesure lorsque les deux droites sont parallèles.

Remarque : deux angles complémentaires ou supplémentaires ne sont pas nécessairement adjacents : Par exemple, dans un triangle ABE rectangle en B, les angles  et Ê sont complémentaires.

Par extension, on définit également les angles entre des demi-droites, des segments de droite et des vecteurs, en prolongeant les droites portant ces objets jusqu'à leur intersection. La définition par des demi-droites ou des vecteurs permet de lever l'indétermination entre les angles supplémentaires, c'est-à-dire de définir sans ambiguïté quel secteur angulaire utiliser pour définir l'inclinaison des directions.

Page générée en 0.232 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise