Notation (mathématiques) - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Quantificateurs

Voir calcul des prédicats pour un point de vue plus théorique sur ces notations.

Pour tout

Notation

\forall , pour tout, quel que soit.

Exemples

\forall n, ( n\in\mathbb{N} \Rightarrow n\ge 0 )

  • Quel que soit n entier naturel, n est supérieur ou égal à zéro.
  • \mathbb{N} est minoré par zéro.

\forall n\in\mathbb{N}, n\ge 0

  • Forme condensée.

\forall a\in\mathbb{R}, ( a \le 0 \land a \ge 0 \Rightarrow a = 0 )

  • Pour tout réel a, si a est inférieur ou égal à zéro, et si a est supérieur ou égal à zéro, alors a est nul.
  • Tout réel, à la fois supérieur ou égal à zéro et inférieur ou égal à zéro, est nul.

Il existe

Notation

\exists , il existe (au moins un).

Exemples

\exists n, n\in\mathbb{N}

  • Il existe un élément dans \mathbb{N} .
  • \mathbb{N} est non vide.

\exists x, x\in\mathbb{R} \land x \ge 1

  • Il existe un réel x tel que x soit plus grand ou égal à un.
  • \mathbb{R} n'est pas majoré par 1.

\exists x\in\mathbb{R}, x \ge 1

  • Forme condensée.

Exemples généraux

\forall n \in\mathbb{N}, \exists m\in\mathbb{N}, m \ge n

  • Pour tout entier naturel n, il existe un autre entier naturel m tel que m soit supérieur ou égal à n.
  • Tout entier naturel est inférieur ou égal à au moins un autre entier naturel.

\exists m\in\mathbb{N}, \forall n \in\mathbb{N}, m \ge n

  • Il existe un entier naturel m tel que quel que soit l'entier naturel n, m soit plus grand que n.
  • \mathbb{N} est majoré.
On notera donc que l'ordre des quantificateurs est important : la première proposition est vraie, l'autre est fausse.

\forall (a,l)\in\mathbb{R}^2, \exists f : \mathbb{R} \rightarrow \mathbb{R}, \forall \epsilon \in \mathbb{R_+^*}, \exists \alpha\in\mathbb{R_+^*}, \forall x\in[a-\alpha,a+\alpha], |f(x)-l|\le\epsilon

  • Pour tout réels a et l, il existe une application f de \mathbb{R} dans \mathbb{R} telle que f tend vers l en a.
Les quantificateurs permettent de définir les notions mathématiques.

Il existe un unique

La notation  \exists ! qui signifie il existe un unique.... Ce quantificateur se définit à partir des quantificateurs précédents et de l'égalité. Pour P(x) une propriété de x :

∃! x P(x) équivaut par définition à ∃ x [P(x) ∧ ∀ y (P(y) ⇒ y = x)]

ou de façon équivalente :

∃! x P(x) équivaut à ∃ x P(x) ∧ ∀ xy [(P(x) ∧ P(y)) ⇒ y = x] .

Exemple. \forall x \in \R^*,\ \exists ! y \in \R^*,\ xy=1  : pour tout x réel non nul, il existe un unique réel y non nul tel que le produit xy soit égal à 1. En d'autres termes, x admet un unique inverse pour la multiplication.

Page générée en 0.105 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise