Propriété universelle - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Propriété universelle des groupes quotients

Cette propriété est similaire à celle des modules quotients.

Soient \displaystyle G et \displaystyle F deux groupes, soit H \triangleleft G Soit f : G \longrightarrow F un morphisme de groupes tel que H \subset ker f .

Alors il existe un unique morphisme de groupe \bar f : \frac {G}{H} \longrightarrow F tel que f = \bar f \circ \pi avec \displaystyle \pi la surjection cannonique.

La démonstration de cette propriété est semblable à celle de la propriété universelle des modules quotients, sauf qu'on suppose dans les prémisses que \displaystyle f est constante sur les classes. Par ailleurs, on introduit la normalité de \displaystyle H dans \displaystyle G pour ne pas avoir à énoncer la propriété pour le groupe quotient à gauche et pour le groupe quotient à droite.

Propriété universelle des algèbres

Soient \displaystyle R un corps, \displaystyle A une R-algèbre, \displaystyle I un idéal bilatère de \displaystyle A , \displaystyle B une R-algèbre. Soit f : A \longrightarrow B un morphisme d'algèbre tel que I \subset ker f .

Alors il existe un unique morphisme d'algèbre g : \frac A I \longrightarrow B tel que g \circ \pi = f avec \displaystyle \pi la surjection canonique.

Page générée en 0.086 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise