La biosynthèse s'effectue dans les corps allates, qui sont des glandes endocrines proches du cerveau, souvent associées aux corps cardiaques, avec lesquels elles constituent un organe présentant beaucoup d'analogies avec l'hypophyse des vertébrés.
La voie de biosynthèse est relativement bien connue car elle utilise des enzymes homologues à celles qui interviennent dans la biosynthèse des stérols chez les autres animaux. Mais les insectes, qui sont incapables de synthétiser les stérols et doivent les obtenir de leur alimentation, semblent avoir détourné la première partie de la voie métabolique des stérols au profit de la biosynthèse de l'hormone juvénile.
La voie de biosynthèse (très simplifiée) de la JH3 est : acétate (acétyl-coenzyme A) → mévalonate → farnésol → farnésoate → méthyl-farnésoate → JH3.
Il existe un contrôle de l'activité des corps allates par des neuropeptides, soit des allatotropines (qui stimulent l'activité de biosynthèse de la JH par les corps allates), soit des allatostatines (qui inhibent cette activité).
La dégradation de l'hormone juvénile met essentiellement en jeu des enzymes qui hydrolysent la fonction ester méthylique (il s'agit de JH-estérases) ou qui transforment la fonction époxyde en une forme diol (il s'agit de JH-époxy-hydrolases). Ces enzymes sont particulièrement actives au moment où l'insecte entre en phase de métamorphose.
Des dosages de l'hormone juvénile (effectués notamment par des tests biologiques, mais aussi par des méthodes immunologiques de type ELISA ou par chromatographie en phase gazeuse) montrent en effet que les taux hormonaux, qui sont élevés chez les jeunes larves, mais aussi chez les adultes, atteignent leurs niveaux les plus bas avant et pendant la métamorphose.
On doit la découverte du rôle insecticide des dérivés de l'hormone juvénile à un chercheur tchèque, Karel Slama, qui, en effectuant un stage aux États-Unis, s'est aperçu que le papier filtre utilisé dans le laboratoire américain perturbait le développement des insectes qu'il étudiait, une punaise du genre Pyrrhocoris connue sous le nom de gendarme, laquelle se développait pourtant parfaitement sur du papier européen. Le facteur papier, provenant de pins américains, a été isolé et s'est révélé très proche de la structure de l'hormone juvénile. C'était donc le premier composé juvénoïde, c'est-à-dire un modulateur endocrinien ayant des propriétés mimétiques de l'hormone juvénile, et perturbant le développement des insectes. Depuis, de nombreux autres composés voisins ont été isolés de plantes puis, surtout, synthétisés par les méthodes de la chimie organique. Certains sont actuellement exploités comme insecticides dans l'agriculture.
Le mode d'action de l'hormone juvénile n'est pas encore connu. Agit-elle par l'intermédiaire d'un récepteur membranaire ? Ou d'un récepteur nucléaire ? Différents auteurs ont donné des arguments pour chacune des deux hypothèses (qui ne sont d'ailleurs pas exclusives, comme cela a été montré pour d'autres hormones). La protéine Usp a été proposée comme récepteur nucléaire possible de l'hormone juvénile, mais cela reste sujet à débat. Rappelons qu'Usp est le partenaire d'EcR pour la constitution du récepteur de l'ecdysone.
Les hormones juvéniles d'insectes n'ont pas été retrouvées chez les autres arthropodes. Toutefois, certains d'entre eux, notamment des crustacés ou des tiques, sont sensibles aux composés juvénoïdes qui perturbent le développement ou la reproduction des insectes. Par exemple, chez le homard, l'application de juvénoïdes sur de jeunes larves, produit des stades larvaires supplémentaires, et retarde donc la métamorphose, comme chez l'insecte.
Il est donc vraisemblable que des hormones juvéniles différentes des JH d'insectes existent chez les autres arthropodes. Chez les crustacés, plusieurs études suggèrent que le méthyl-farnésoate (MF) pourrait ainsi jouer le rôle d'hormone juvénile.