Jackknife - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Exemple

Pour n=25 tirages indépendants dans la loi bêta de paramétres (3;7), on considère l'estimateur (biaisé) de la variance :

\hat s^2 = \frac{1}{n} \sum_i (x_i - \bar{x})^2
0,21876 0,11996 0,25072 0,30178 0,14852
0,16383 0,14686 0,29925 0,15777 0,45958
0,41439 0,45365 0,41157 0,29788 0,30316
0,25900 0,69559 0,14129 0,12868 0,14144
0,32000 0,30767 0,30478 0,28287 0,14855

Sur l'échantillon, cet estimateur vaut 0,017892 pour une vraie valeur de 0,01909091. L'estimateur par la méthode jackknife vaut quant à lui 0,01863750 : le biais, même en petit échantillon, a été réduit. On peut construire un intervalle de confiance à 95 % : la variance de l'estimateur est 5,240744e-05 ce qui donne un intervalle de [0,003696325;0,033578679] qui contient la vraie valeur.

Page générée en 0.071 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise