En statistiques, et en particulier dans la théorie des sondages, lorsqu'on cherche à estimer la valeur d'un paramètre, on parle d'intervalle de confiance lorsque l'on donne un intervalle qui contient, avec un certain degré de confiance, la valeur à estimer. Le degré de confiance est en principe exprimé sous la forme d'une probabilité. Par exemple, un intervalle de confiance à 95% (ou au seuil de risque de 5%) a une probabilité égale à 0,95 de contenir la valeur du paramètre que l'on cherche à estimer.
Ainsi, lorsqu'on effectue un sondage (tirage au hasard d'un sous-ensemble d'une population), l'estimation d'une quantité d'intérêt donnée est soumise au hasard et correspond rarement exactement à la valeur de la quantité que l'on cherche à estimer. En présentant pour l'estimation non pas une valeur mais un encadrement, on quantifie d'une certaine manière l'incertitude sur la valeur estimée.
Plus l'intervalle de confiance est de taille petite, plus l'incertitude sur la valeur estimée est petite. L'un des objectifs de la théorie des sondages consiste à trouver des méthodes permettant de donner des intervalles de confiance de taille raisonnable.
L'usage le plus simple des intervalles de confiance concerne les populations à distribution normale (en forme de cloche) dont on cherche à estimer la moyenne . Si on connaît l'écart type σ(X) (ou si on en connaît une estimation assez fiable) de cette distribution, et si on mesure la moyenne sur un échantillon de taille n pris au hasard, alors
Ces formules sont valables pour des échantillons supposés infinis (n>100). Dans le cas d'échantillon plus petit, la consultation d'une table de distribution de la loi de Student est nécessaire.
Encore faut-il connaître ou avoir une estimation de l'écart type σ(X). En pratique, on prend comme estimation de σ(X) la valeur où est l'écart-type de la série de mesures issues de l'échantillon.
Ainsi l'on voit que pour augmenter la confiance, il faut élargir l'intervalle et pour obtenir un intervalle plus fin avec même degré de confiance, il faut augmenter la taille de l'échantillon.
L'intervalle de confiance mesure le degré de précision que l'on a sur les estimations issues de l'échantillon. Il y a deux sources principales de variations sur les données qui peuvent être la cause d'un manque de précision dans l'estimation d'une grandeur.
Parmi les méthodes d'estimation, nous pouvons citer l'estimation par intervalle de confiance. Il s'agit de trouver un intervalle contenant un paramètre (inconnu) à estimer avec une probabilité ou niveau de confiance de 1 − α. Pour p un paramètre (inconnu) à estimer on cherche par exemple a et b tels que:
Si on appelle p la valeur exacte du paramètre , et que la valeur mesurée suit une loi de probabilité dépendant de p : , l'intervalle de confiance I(x) (au « niveau de confiance » 1 − α) relatif à une observation x constatée, est l'intervalle dans lequel, pour toute valeur p,
Pour un p donné, c'est la probabilité d'observer une valeur x pour laquelle le paramètre à estimer soit dans l'intervalle de confiance associé à cette observation x.
Ceci ne signifie pas que « la probabilité que la valeur réelle soit dans I(x) est 1 − α », ce qui n'aurait pas de sens puisque la valeur réelle n'est pas une variable aléatoire. Cela signifie que « si la valeur réelle n'est pas dans I(x), la probabilité a priori du résultat de l'observation que l'on a obtenu était inférieure à α ». Par exemple si le paramètre n'est pas dans l'intervalle, c'est que l'observation effectuée correspond à un phénomène "rare" dans lequel l'intervalle de confiance ne contient pas la vraie valeur.