La surface de dernière diffusion est par définition la région la plus lointaine que l'on puisse observer. Une région plus lointaine encore aurait dû émettre sa lumière plus tôt pour nous parvenir, car la distance à parcourir pour les photons depuis cette région serait plus grande. Or un rayonnement émis plus tôt par cette région le sera avant la recombinaison, et sera immédiatement diffusé par les électrons libres. Ainsi, il n'est pas possible de voir cette région, de la même façon que l'on ne voit que la surface d'une étoile et pas son intérieur. Pour cette raison, la surface de dernière diffusion est parfois appelée, un peu abusivement horizon, car aucun signal électromagnétique ne peut nous parvenir depuis des régions plus lointaines.
Cependant, il peut exister d'autres messagers se déplaçant à la vitesse de la lumière et n'interagissant pas, ou très peu avec la matière : il s'agit des neutrinos et des gravitons. De la même façon que l'univers est passé d'un état opaque à un état transparent pour les photons, il en a fait de même pour les neutrinos. L'époque charnière entre ces deux états est appelée découplage des neutrinos, et s'est produite plus tôt dans l'histoire de l'univers. Celui-ci était âgé d'une fraction de seconde et avait une température de l'ordre de 10 milliards de degrés. À ce moment où l'univers est devenu transparent aux neutrinos, ceux-ci se sont mis à voyager en ligne droite jusqu’à maintenant. Ces neutrinos originaires du Big Bang forment ce que l'on appelle le fond cosmologique de neutrinos, dont l'existence est avérée par les résultats de la nucléosynthèse primordiale, mais dont la détection directe semble largement hors de portée des moyens observationnels à long, voire à très long terme.
Un phénomène similaire se produit pour les ondes gravitationnelles. Celles-ci peuvent se propager librement dans l'univers depuis l'ère de Planck. Des ondes gravitationnelles existent probablement depuis le Big Bang, mais leur détection extrêmement délicate fait qu'elles n'ont pu être observées. Il y a de plus probablement eu une phase d'expansion accélérée dans l'univers primordial, appelée inflation cosmique. Bien que techniquement parlant les ondes gravitationnelles puissent se propager librement dans l'univers depuis avant l'inflation, il est de coutume de dire que le fond cosmologique d'ondes gravitationnelles est issu de l'inflation, car c'est cette époque qui a façonné ces ondes sous la forme qu'elles ont probablement encore aujourd'hui. La détection de ces ondes gravitationnelles primordiales est un des enjeux majeurs de la cosmologie moderne, car elle permettrait d'obtenir des informations directes et très précieuses sur l'époque et la physique de la phase d'inflation.