La contre-réaction soustrait au signal d’entrée une image réduite du signal de sortie avant de l’amplifier. Son principal effet est de diminuer le gain du système. Cependant, les distorsions dues à l’amplificateur sont elles aussi soustraites au signal d’entrée. De cette façon, l’amplificateur amplifie une image réduite et inversée des distorsions, ce qui permet d'en diminuer le taux, de linéariser la courbe de réponse tension / fréquence, et d'augmenter la bande passante. La contre-réaction permet aussi de compenser les dérives thermiques ou la non-linéarité des composants. La contre-réaction est aussi utilisée pour définir précisément le gain ainsi que la bande passante et de nombreux autres paramètres d'un montage amplificateur.
Il existe deux types de contre-réactions : la contre-réaction en tension et la contre-réaction en courant. Les amplificateurs utilisant une contre-réaction en courant sont aussi appelés « amplificateur transimpédance », mais ce terme est aussi utilisé pour les convertisseurs courant / tension qui peuvent utiliser des amplificateurs à contre-réaction en courant ou des amplificateurs à contre-réaction en tension.
Le premier brevet concernant les amplificateurs à contre-réaction en courant a été déposé en 1983 par David Nelson et Kenneth Saller. Avant cette date, tous les amplificateurs utilisaient une contre-réaction en tension. L'utilisation d'une contre-réaction en courant permet de réaliser des AOP plus rapides et générant moins de distorsions. Le principal défaut des amplificateurs à contre-réaction en courant est qu'ils possèdent une tension d'offset plus importante que leurs homologues à contre-réaction en tension. Ce défaut les rend moins adaptés à la fabrication d'amplificateurs à fort gain ou d'amplificateurs d'instrumentation.
Les AOP utilisant une contre-réaction en courant sont tous des amplificateurs bipolaires. De par leur conception, ils possèdent une forte impédance d'entrée pour l'entrée non-inverseuse et une faible impédance pour l'entrée inverseuse (celle utilisée principalement comme entrée du signal dans les montages amplificateurs). Pour les amplis à contre-réaction en courant, le gain en boucle ouverte se mesure en ohms et non plus en V/V comme pour les AOP standard. De la faible impédance de l'entrée non-inverseuse découle également une grande immunité vis-à-vis des bruits parasites dans les montages amplificateurs.
Chaque étage d'un amplificateur possède une résistance de sortie et une capacité en entrée. Ainsi, chaque étage d'un amplificateur se comporte comme un filtre passe-bas du premier ordre pour son prédécesseur. C'est ce qui explique les variations de gain et de phase en fonction de la fréquence dans un AOP. Les AOP étant généralement composés d'au moins trois étages d'amplification, ils se comportent en boucle ouverte comme un filtre passe-bas du troisième ordre. Or, dans un AOP le gain continu est tel que l'amplificateur possède encore un gain en boucle ouverte supérieur à 1 lorsque le déphasage vaut 180°, ce qui peut poser des problèmes de stabilité lors d'une utilisation en boucle fermée.
Afin que l'amplificateur soit stable même lors d'une utilisation en suiveur, les performances de la plupart des AOP sont dégradées par l'ajout d'un condensateur à l'intérieur de l'AOP afin d'assurer une marge de phase suffisante lors d'une utilisation en suiveur. De tels amplificateurs sont inconditionnellement stables, mais leurs performances ne sont pas forcément suffisantes pour toutes les applications.
Pour les applications nécessitant un produit gain-bande plus important, il existe des AOP non-compensés ou sous-compensés qui offrent de meilleures performances mais dans ce cas, c'est au concepteur du circuit d'effectuer ou non une compensation externe afin que l'amplificateur soit stable pour son application.