Groupe (mathématiques) - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Conséquences élémentaires de la définition

Quelques conséquences élémentaires peuvent être tirées de l'étude de la définition.

Plus de deux éléments

L'axiome d'associativité permet de définir l'opération sur trois éléments et non plus deux, en "levant" les parenthèses. En effet, quels que soient les éléments a, b et c du groupe, il est possible de définir abc sans ambigüité :

abc = (ab) • c = a • (bc).

Puisque les parenthèses peuvent être écrites n'importe où dans une série de plusieurs termes, il est d'usage de les omettre.

Affaiblissement des axiomes

Les axiomes peuvent a priori être affaiblis, en ne considérant par exemple que l'inverse et l'élément neutre à gauche. Si on remplace les deux derniers axiomes de la définition ci-dessus par

Élément neutre à gauche

Il existe un élément e de G tel que, pour tout a dans G, ea = a.

Inverse à gauche

Pour tout élément a de G, il existe b dans G tel que ba = e, où e est l'élément neutre.

La nouvelle définition, apparemment plus générale que la précédente, est en fait équivalente.

Unicité de l'élément neutre et des inverses

Il y a unicité de l'élément neutre et, pour chaque élément a du groupe, de l'inverse de a. Cela signifie qu'un groupe possède exactement un élément neutre et que chaque élément du groupe possède un et un seul inverse. L'emploi de l'article défini est donc correct : on parle de « l'inverse » d'un élément et de « l'élément neutre » du groupe.

Page générée en 0.170 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise