Un groupe est, en mathématiques, un ensemble non vide muni d'une loi de composition interne (ou opération). Cet ensemble et cette opération forment un groupe lorsque l'opération est associative, admet un élément neutre et lorsque chaque élément de l'ensemble admet un inverse relativement à cette loi. La structure de groupe est commune à de nombreux ensembles de nombres — par exemple les nombres entiers, munis de la loi d'addition. Mais cette structure se retrouve aussi dans de nombreux autres domaines, notamment en algèbre, ce qui en fait une notion centrale des mathématiques modernes.
La structure de groupe possède un lien étroit avec la notion de symétrie. Un groupe de symétrie décrit les symétries d'une forme géométrique : il consiste en un ensemble de transformations géométriques qui laissent l'objet invariant, l'opération consistant à composer de telles transformations, c'est-à-dire à les appliquer l'une après l'autre. De tels groupes de symétrie, en particulier les groupes de Lie continus, jouent un rôle important dans de nombreuses sciences. Les groupes généraux linéaires, par exemple, sont utilisés en physique fondamentale pour comprendre les lois de la relativité restreinte et les phénomènes liés à la symétrie des molécules en chimie.
Le concept de groupe est né de l'étude des équations polynomiales par Évariste Galois dans les années 1830. Après des apports dans d'autres domaines comme la théorie des nombres et la géométrie, la notion de groupe a été généralisée et fermement établie vers 1870. La théorie des groupes moderne — une branche très active des mathématiques — étudie les groupes pour eux-mêmes. Pour explorer les groupes, les mathématiciens ont élaboré différentes notions afin de casser les groupes en morceaux plus petits, plus compréhensibles, comme les sous-groupes, groupes quotients et groupes simples. En plus de leurs propriétés abstraites, les spécialistes de la théorie des groupes étudient les différentes manières de les exprimer concrètement (ce qu'on appelle une représentation de groupe), que ce soit d'un point de vue théorique ou calculatoire. Une théorie particulièrement riche a été développée pour les groupes qui possèdent un nombre fini d'éléments, qui a culminé avec la classification des groupes simples finis, achevée en 1983. Depuis le milieu des années 1980, la théorie géométrique des groupes, qui étudie les groupes de type fini en tant qu'objets géométriques, est devenu un domaine particulièrement actif de la théorie des groupes.
Un des groupes les plus communs est l'ensemble des entiers relatifs ℤ, qui est constitué des nombres
Les propriétés suivantes de l'addition usuelle servent de modèle pour les axiomes de la définition générale donnée plus bas.
Les entiers, munis de l'opération "+", forment un objet mathématique qui appartient à une vaste classe d'objets partageant des similarités de structure. La définition formelle suivante, qui englobe l'exemple précédent et beaucoup d'autres, dont les groupes de symétries détaillés plus bas, permet de comprendre ces structures sans traiter chaque cas séparément.
Un groupe est un couple dont le premier terme est un ensemble G et le second une opération (on dit aussi loi de composition) sur cet ensemble "•" qui, à deux éléments a et b de G, associe un autre élément a • b. Le symbole "•" est un signe général qui désigne une opération donnée, comme l'addition ci-dessus. On exige que la loi satisfasse quatre axiomes.
Pour tous a et b éléments de G, le résultat a • b est aussi dans G.
Pour tous éléments a, b et c de G, l'égalité (a • b) • c = a • (b • c) est vraie.
Il existe un élément e de G tel que, pour tout a dans G, e • a = a • e = a. e est appelé élément neutre du groupe (G, •).
Pour tout élément a de G, il existe b dans G tel que a • b = b • a = e, où e est l'élément neutre. b est appelé inverse de a.
L'ordre dans lequel l'opération est effectuée peut être important. Autrement dit, le résultat de la combinaison d'un élément a avec un élément b peut ne pas être le même que celui de la combinaison de b avec a ; l'égalité
n'est pas toujours vraie. Un groupe dans lequel on a toujours a • b = b • a est dit commutatif, ou abélien (en l'honneur de Niels Abel). Ainsi, le groupe additif des nombres entiers est abélien mais le groupe de symétrie décrit ci-dessous ne l'est pas.
Les symétries (c'est-à-dire les rotations et réflexions) d'un carré forment un groupe appelé groupe diédral et noté D4. En voici la liste :
Deux symétries quelconques peuvent être composées ; c'est-à-dire appliquées l'une après l'autre. Le résultat obtenu en exerçant a puis b est écrit symboliquement
Le groupe D4 est décrit par la table de Cayley ci-contre. Il s'agit d'un tableau analogue aux tables de multiplications des écoliers. Ainsi, à l'intersection de la ligne fh et de la colonne r3 se trouve fd (case coloriée en bleu). Cela signifie que fh • r3 = fd. Autrement dit, appliquer au carré une rotation d'angle 270° vers la droite (r3) puis un retournement horizontal (fh) revient à lui appliquer un retournement suivant la première diagonale (fd).
• | id | r1 | r2 | r3 | fv | fh | fd | fc |
---|---|---|---|---|---|---|---|---|
id | id | r1 | r2 | r3 | fv | fh | fd | fc |
r1 | r1 | r2 | r3 | id | fc | fd | fv | fh |
r2 | r2 | r3 | id | r1 | fh | fv | fc | fd |
r3 | r3 | id | r1 | r2 | fd | fc | fh | fv |
fv | fv | fd | fh | fc | id | r2 | r1 | r3 |
fh | fh | fc | fv | fd | r2 | id | r3 | r1 |
fd | fd | fh | fc | fv | r3 | r1 | id | r2 |
fc | fc | fv | fd | fh | r1 | r3 | r2 | id |
Les éléments id, r1, r2, et r3 forment un sous-groupe, colorié en rouge (en haut à gauche). Deux classes à gauche et à droite suivant ce sous-groupe sont en vert (dernière ligne) et jaune (dernière colonne), respectivement. |
Étant donnés cet ensemble de symétrie et l'opération décrite ci-dessus, les axiomes de groupes peuvent être compris ainsi :
Au contraire du groupe des entiers déjà cité, l'ordre dans lequel sont effectuées les opérations est important, dans D4 : fh • r1 = fc mais r1 • fh = fd.. On dit que D4 n'est pas commutatif. On voit ici que la structure de groupe est plus délicate que le premier exemple sur les entiers pouvait le laisser supposer.