Groupe (mathématiques) - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Introduction

Les manipulations possibles du cube de Rubik forment un groupe.

Un groupe est, en mathématiques, un ensemble non vide muni d'une loi de composition interne (ou opération). Cet ensemble et cette opération forment un groupe lorsque l'opération est associative, admet un élément neutre et lorsque chaque élément de l'ensemble admet un inverse relativement à cette loi. La structure de groupe est commune à de nombreux ensembles de nombres — par exemple les nombres entiers, munis de la loi d'addition. Mais cette structure se retrouve aussi dans de nombreux autres domaines, notamment en algèbre, ce qui en fait une notion centrale des mathématiques modernes.

La structure de groupe possède un lien étroit avec la notion de symétrie. Un groupe de symétrie décrit les symétries d'une forme géométrique : il consiste en un ensemble de transformations géométriques qui laissent l'objet invariant, l'opération consistant à composer de telles transformations, c'est-à-dire à les appliquer l'une après l'autre. De tels groupes de symétrie, en particulier les groupes de Lie continus, jouent un rôle important dans de nombreuses sciences. Les groupes généraux linéaires, par exemple, sont utilisés en physique fondamentale pour comprendre les lois de la relativité restreinte et les phénomènes liés à la symétrie des molécules en chimie.

Le concept de groupe est né de l'étude des équations polynomiales par Évariste Galois dans les années 1830. Après des apports dans d'autres domaines comme la théorie des nombres et la géométrie, la notion de groupe a été généralisée et fermement établie vers 1870. La théorie des groupes moderne — une branche très active des mathématiques — étudie les groupes pour eux-mêmes. Pour explorer les groupes, les mathématiciens ont élaboré différentes notions afin de casser les groupes en morceaux plus petits, plus compréhensibles, comme les sous-groupes, groupes quotients et groupes simples. En plus de leurs propriétés abstraites, les spécialistes de la théorie des groupes étudient les différentes manières de les exprimer concrètement (ce qu'on appelle une représentation de groupe), que ce soit d'un point de vue théorique ou calculatoire. Une théorie particulièrement riche a été développée pour les groupes qui possèdent un nombre fini d'éléments, qui a culminé avec la classification des groupes simples finis, achevée en 1983. Depuis le milieu des années 1980, la théorie géométrique des groupes, qui étudie les groupes de type fini en tant qu'objets géométriques, est devenu un domaine particulièrement actif de la théorie des groupes.

Définition et illustration

Premier exemple : les entiers

Un des groupes les plus communs est l'ensemble des entiers relatifs ℤ, qui est constitué des nombres

..., −4, −3, −2, −1, 0, 1, 2, 3, 4, ...

Les propriétés suivantes de l'addition usuelle servent de modèle pour les axiomes de la définition générale donnée plus bas.

  1. Pour deux entiers quelconques a et b, la somme a+b est aussi un entier. En d'autres termes, le fait d'additionner deux entiers ne peut jamais mener à un résultat non entier. On dit que l'addition est une loi de composition interne.
  2. Pour tous entiers a, b et c, (a + b) + c = a + (b + c). Littéralement, additionner d'abord a et b, puis ajouter c au résultat donne le même résultat final qu'ajouter a à la somme de b et c. Cette propriété est nommée associativité.
  3. Si a est un entier, alors 0 + a = a + 0 = a. Zéro est ce qu'on appelle un élément neutre pour l'addition, parce qu'ajouter 0 à tout entier renvoie cet entier.
  4. Pour tout entier a, il existe un entier b tel que a + b = b + a = 0. L'entier b est appelé l'élément inverse de l'entier a et est noté −a (pour l'addition, on dit aussi opposé).

Définition

Les entiers, munis de l'opération "+", forment un objet mathématique qui appartient à une vaste classe d'objets partageant des similarités de structure. La définition formelle suivante, qui englobe l'exemple précédent et beaucoup d'autres, dont les groupes de symétries détaillés plus bas, permet de comprendre ces structures sans traiter chaque cas séparément.

Un groupe est un couple dont le premier terme est un ensemble G et le second une opération (on dit aussi loi de composition) sur cet ensemble "•" qui, à deux éléments a et b de G, associe un autre élément ab. Le symbole "•" est un signe général qui désigne une opération donnée, comme l'addition ci-dessus. On exige que la loi satisfasse quatre axiomes.

Loi de composition interne

Pour tous a et b éléments de G, le résultat ab est aussi dans G.

Associativité

Pour tous éléments a, b et c de G, l'égalité (ab) • c = a • (bc) est vraie.

Élément neutre

Il existe un élément e de G tel que, pour tout a dans G, ea = ae = a. e est appelé élément neutre du groupe (G, •).

Inverse

Pour tout élément a de G, il existe b dans G tel que ab = ba = e, où e est l'élément neutre. b est appelé inverse de a.

L'ordre dans lequel l'opération est effectuée peut être important. Autrement dit, le résultat de la combinaison d'un élément a avec un élément b peut ne pas être le même que celui de la combinaison de b avec a ; l'égalité

ab = ba

n'est pas toujours vraie. Un groupe dans lequel on a toujours ab = ba est dit commutatif, ou abélien (en l'honneur de Niels Abel). Ainsi, le groupe additif des nombres entiers est abélien mais le groupe de symétrie décrit ci-dessous ne l'est pas.

Deuxième exemple : un groupe de symétrie

Les symétries (c'est-à-dire les rotations et réflexions) d'un carré forment un groupe appelé groupe diédral et noté D4. En voici la liste :

Group D8 id.svg
id (identité : chaque point est conservé)
Group D8 90.svg
r1 (rotation de 90° vers la droite)
Group D8 180.svg
r2 (rotation de 180°)
Group D8 270.svg
r3 (rotation de 270° vers la droite)
Group D8 fv.svg
fv (retournement vertical)
Group D8 fh.svg
fh (retournement horizontal)
Group D8 f13.svg
fd (retournement suivant la première diagonale)
Group D8 f24.svg
fc (retournement suivant la deuxième diagonale)
Les éléments du groupe de symétrie (D4). Les sommets sont colorés et numérotés uniquement pour visualiser les transformations.
  • l'application identité, laissant tout inchangé, est notée id ;
  • les rotations de 90° , 180° et 270° vers la droite, notées respectivement r1, r2 et r3. Le centre de toutes ces rotations est le point d'intersection des diagonales du carré ;
  • les réflexions ayant pour axes les médiatrices des côtés du carré (fh et fv) ou ses diagonales (fd et fc).

Deux symétries quelconques peuvent être composées ; c'est-à-dire appliquées l'une après l'autre. Le résultat obtenu en exerçant a puis b est écrit symboliquement

ba (« appliquer la symétrie b après avoir appliqué a. » L'écriture de droite à gauche utilisée ici provient de la composition de fonctions.)

Le groupe D4 est décrit par la table de Cayley ci-contre. Il s'agit d'un tableau analogue aux tables de multiplications des écoliers. Ainsi, à l'intersection de la ligne fh et de la colonne r3 se trouve fd (case coloriée en bleu). Cela signifie que fh • r3 = fd. Autrement dit, appliquer au carré une rotation d'angle 270° vers la droite (r3) puis un retournement horizontal (fh) revient à lui appliquer un retournement suivant la première diagonale (fd).

Table de Cayley de D4
id r1 r2 r3 fv fh fd fc
id id r1 r2 r3 fv fh fd fc
r1 r1 r2 r3 id fc fd fv fh
r2 r2 r3 id r1 fh fv fc fd
r3 r3 id r1 r2 fd fc fh fv
fv fv fd fh fc id r2 r1 r3
fh fh fc fv fd r2 id r3 r1
fd fd fh fc fv r3 r1 id r2
fc fc fv fd fh r1 r3 r2 id
Les éléments id, r1, r2, et r3 forment un sous-groupe, colorié en rouge (en haut à gauche). Deux classes à gauche et à droite suivant ce sous-groupe sont en vert (dernière ligne) et jaune (dernière colonne), respectivement.

Étant donnés cet ensemble de symétrie et l'opération décrite ci-dessus, les axiomes de groupes peuvent être compris ainsi :

  1. L'opération doit être une loi de composition interne : pour toutes symétries a et b, ba doit être aussi une symétrie du carré. Par exemple r3 • fh = fc
    c'est-à-dire que faire pivoter le carré de 270° vers la droite après l'avoir retourné horizontalement revient à l'avoir retourné suivant la deuxième diagonale (fc). Toutes les combinaisons de deux symétries donnent une symétrie, comme en atteste la table de Cayley ci-contre.
  2. L'hypothèse d'associativité traite de la composition de plus de deux symétries : soient trois éléments a, b et c de D4, il existe deux façons possibles de calculer "a puis b puis c". La condition
    a • (bc) = (ab) • c
    signifie que la composition de trois éléments est indépendante de l'ordre de priorité des opérations. Cela peut aussi être vérifié en examinant la table de Cayley ci-contre. Par exemple, on peut remarquer que
    (fd • fv) • r2 = r3 • r2 = r1
    est égal à
    fd • (fv • r2) = fd • fh = r1
  3. L'élément neutre est la symétrie notée id, qui laisse tout invariant. Quelle que soit la symétrie a, composer a et id revient à appliquer a :
    id • a = a,
    a • id = a.
  4. Un élément inverse est la transformation réciproque d'une symétrie donnée. Chaque symétrie peut être "défaite". Chacune des transformations id, fh, fv, fd, fc et la rotation à 180° r2 est sa propre inverse, ce qui revient à dire qu'appliquer deux fois une de ces transformations revient à laisser le carré invariant. Les rotations r3 et r1 sont inverses l'une de l'autre. Formellement, on écrit :
    fh • fh = id,
    r3 • r1 = r1 • r3 = id.

Au contraire du groupe des entiers déjà cité, l'ordre dans lequel sont effectuées les opérations est important, dans D4 : fh • r1 = fc mais r1 • fh = fd.. On dit que D4 n'est pas commutatif. On voit ici que la structure de groupe est plus délicate que le premier exemple sur les entiers pouvait le laisser supposer.

Page générée en 0.550 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise