La première publication portant sur l'idéographie est le texte éponyme Idéographie (Begriffschrift) publié en 1879. Frege continua à travailler à l'idéographie dans Les Fondements de l'arithmétique (Die Grundlagen der Arithmetik, 1884).
La présentation axiomatisée de logique chez Frege qui repose sur l'idéographie utilisée entre autres dans les Lois fondamentales de l’arithmétique (Grundgesetze der Arithmetik) a été mise à mal par le paradoxe de Russell. Elle contient en plus de la version de 1879 la loi V qui aboutit à une contradiction comme ∃x (F(x)∧¬F(x)). L'idéographie de 1879 et les théorèmes des Grundgesetze der Arithmetik utilisant cette loi V sont tout de même valides.
Cette loi V exprime que deux extensions de concepts sont identiques quand ils ont les mêmes cas de vérités, soit comme l’écrit Frege dans les Lois fondamentales ἐF(ε) = ἀG(α) = ∀x(F(x) = G(x)), ce qui établit une équipotence (même cardinal) entre l’ensemble des extensions de concepts et celui des concepts, ce qui est contredit par le fait qu’un ensemble a un cardinal strictement inférieur à celui de l’ensemble de ses sous-ensembles. De plus, un corollaire de cette loi V est que tout concept admet une extension, y compris les plus farfelus comme celui-ci « être une extension du concept sous lequel on ne tombe pas » qui, exprimé dans l’idéographie des Lois fondamentales ainsi x=εF ∧ ¬F(x), aboutit au paradoxe du barbier.