Dans une entreprise, le volume de données traitées croît rapidement avec le temps. Ces données peuvent provenir, des fournisseurs, des clients, de l’environnement etc. Cette quantité de données augmente en fonction du secteur et de l'activité de l’entreprise. Par exemple, dans la grande distribution, les quantités de données collectées chaque jour sont énormes (notamment lorsque les magasins collectent les tickets des caisses).
L'entreprise dispose de plusieurs options pour traiter ce flux de données :
Le projet décisionnel correspond à cette dernière option. Il s’agit de traiter les données et de les stocker de manière cohérente au fur et à mesure qu’elles se présentent. C’est pour cela que le projet décisionnel est un projet sans limite dans le temps. C'est-à-dire que dès que l’entreprise commence ce projet, elle ne s’arrête pas (sauf cas exceptionnel). Wal-Mart (une chaîne de la grande distribution) est l’une des entreprises qui stockent le plus de données (elle a multiplié par 100 ses données en quelques années) et va atteindre dans les années à venir le pétaoctet (1 000 téraoctets).
Pour mener à bien ces projets décisionnels, il existe une multitude d'outils, chacun étant plus ou moins adapté à la taille de l'entreprise, à la structure des données existantes et au type d'analyse désiré.
cf. gestion des exigences Trois domaines doivent être particulièrement documentés :
En fonction des exigences recueillies, quels sont les éléments de la chaîne de la valeur décisionnelle qui doivent être implémentés ? Doit-on seulement créer un rapport sur un cube OLAP existant ? Construire toute la chaîne ? Quelles sont précisément les données que l'on doit manipuler ? Cela conduit au choix de technologies précises et à un modèle particulier.