Méthode des différences finies - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Schéma numérique

Écrire un schéma numérique de résolution de l'équation différentielle initiale signifie :

  • substituer les formulations des dérivées/différentielles obtenues par approximation aux opérateurs eux-mêmes sur tous les points du maillage.
  • réorganiser les équations pour faire apparaître un schéma explicite (ex : les valeurs à la date t+1 données en fonction des valeurs des dates 0 à t) ou implicite (une équation lie les valeurs passées, présentes et futures sans qu'on arrive à exprimer ces dernières seules).

Dans un cadre de modélisation classique d'opérateurs linéaires dans des équations différentielles linéaires, on aboutit à un système d'équations linéaires de dimension égale au nombre de nœuds du maillage (en fait un peu moins, du fait des données initiales, par exemple).

Résoudre le schéma numérique signifie simplement trouver les valeurs discrètes de la fonction en chaque nœud.

Un système issu d'une équation linéaire peut souvent être algébriquement simple à résoudre. Pour simplifier, on peut dire que les schémas explicites engendrent des systèmes d'équation à matrice triangulaire ou trigonalisables, ce qui n'est pas le cas des schémas implicites.

Les méthodes de résolution des schémas peuvent faire appel à des méthodes d'optimisation comme à des méthodes algébriques classiques.

Exemple de schéma numérique

Partons de l'équation suivante : \forall x \in [0, 1], u'( x ) - \tau u( x ) = 0, u( 0 ) = u_0

Alors, on choisit d'écrire le schéma d'ordre 1 de la dérivée première en tous les points d'un maillage à pas constant {x0 = 0,x1 = h,x2 = 2h,...,xM = Mh = 1}. On recherche exactement M inconnues, les valeurs qu'on écrira u_n = u( n h ), \forall n \in \{ 1, ..., M \} . Le schéma est alors appelé schéma d'Euler explicite d'ordre 1 :

\forall n \in \{ 0, ..., M - 1 \}, \frac{ u_{ n + 1 } - u_n }{ h } - \tau u_n = 0

Ce qui donne explicitement la relation de récurrence entre un et son successeur un + 1

\forall n \in \{ 0, ..., M - 1 \}, u_{ n + 1 } = ( 1 + h \tau ) u_n

Soit une suite géométrique qui nous donne assez facilement, en remplaçant h par sa valeur \frac{1}{M} :

\forall n \in \{ 0, ..., M - 1 \}, u_n = \left( 1 + \frac{ \tau }{ M } \right)^n u_0

On dispose donc pour tous les points du maillage de la valeur de la solution du problème selon la méthode des différences finies. Pour les points non contenus sur le maillage, il faudra alors faire une hypothèse sur la qualité de la solution, par exemple supposer que la fonction est constante ou affine par morceaux.

Choisissons plutôt de partir du schéma d'ordre 2 de la dérivée première, sauf pour le point n = 1 pour lequel on reprend le schéma d'ordre 1 :

\frac{ u_1 - u_0 }{ h } - \tau u_0 = 0
\forall n \in \{ 1, ..., M - 1 \}, \frac{ u_{ n + 1 } - u_{ n - 1 } }{ 2 h } - \tau u_n = 0

Ceci nous donne alors

A \begin{pmatrix}u_2\\u_3\\...\\u_M\end{pmatrix} = \begin{pmatrix}(1+\tau h)u_0\\0\\...\\0\end{pmatrix}

où la matrice A est tridiagonale, avec des − 2τh sur la diagonale, des 1 sur la 1ère surdiagonale et des -1 sur la 1ère sousdiagonale.

Page générée en 0.112 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise