Rotation plane - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Expression complexe

La rotation de centre C et d'angle θ a pour expression complexe

z' = e^{i\theta}(z - z_c) + z_c\,

c’est-à-dire que, si zc est l'affixe de C, le point M d'affixe z a pour image le point M' d'affixe z' vérifiant l'égalité précédente.

Réciproquement, toute transformation dont l'expression complexe est

z' = az + b, où a et b sont des complexes, vérifiant |a| = 1 et a ≠ 1

est une rotation dont le centre C a pour affixe \dfrac{b}{1-a} et dont l'angle est l'argument de a

Cette écriture complexe permet de retrouver aisément toutes les propriétés précédentes.

Page générée en 0.087 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise