Système F - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Correspondance avec la logique du second ordre

À travers la correspondance de Curry-Howard, le système F correspond très exactement à la logique minimale intuitionniste du second ordre, dont les formules sont construites à partir des variables propositionnelles à l'aide de l'implication et de la quantification propositionnelle:

A,B ~~:=~~ \alpha ~~|~~ A\Rightarrow B ~~|~~ \forall\alpha\,B

Rappelons que dans ce cadre, les unités \top (vérité) et \bot (absurdité), les connecteurs \lnot (négation), \land (conjonction) et \lor (disjonction) et la quantification existentielle \exists\alpha\,B(\alpha) sont définissables par

  • \top~\equiv~\forall\gamma\,(\gamma\Rightarrow\gamma)
  • \bot~\equiv~\forall\gamma\,\gamma
  • \lnot A~\equiv~A\Rightarrow\bot
  • A\land B~\equiv~\forall\gamma\,((A\Rightarrow B\Rightarrow\gamma)\Rightarrow\gamma)
  • A\lor B~\equiv~\forall\gamma\,((A\Rightarrow\gamma)\Rightarrow(B\Rightarrow\gamma)\Rightarrow\gamma)
  • \exists\alpha\,B(\alpha)~\equiv~\forall\gamma\,(\forall\alpha\,(B(\alpha)\Rightarrow\gamma)\Rightarrow\gamma)

(On notera qu'à travers la correspondance de Curry-Howard, l'absurdité correspond au type vide, la vérité au type singleton, la conjonction au produit cartésien et la disjonction à la somme directe.)

On démontre que dans ce formalisme, une formule est prouvable sans hypothèses si et seulement si le type correspondant dans le système F est habité par un terme clos.

Le théorème de normalisation forte

Les termes typables du système F sont fortement normalisables.

Bibliographie

  • Lambda-calcul, types et modèles, Jean-Louis Krivine, chapitre VIII, Masson, 1990, ISBN 2225820910
  • Proofs and Types, Jean-Yves Girard, Paul Taylor, Yves Lafont, chapitre 11, Cambridge University Press, 1989, ISBN 0521371813
Page générée en 0.376 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise