ZFC
Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

En mathématiques, l'abréviation ZF désigne la théorie de Zermelo-Fraenkel, ZFC quand elle comprend l'axiome du choix, théorie axiomatique des ensembles la plus couramment utilisée en mathématiques contemporaines. Bien que la théorie (Le mot théorie vient du mot grec theorein, qui signifie « contempler, observer, examiner ». Dans le langage courant, une théorie est une idée ou une connaissance spéculative, souvent basée...) ne porte pas le nom de Thoralf Skolem, celui-ci a également contribué à sa mise au point (Graphie), indépendamment d'Abraham Fraenkel.

Théorie Z

  • Axiome (Un axiome (du grec ancien αξιωμα/axioma, « considéré comme digne, convenable, évident en soi ») désigne une vérité indémontrable qui doit être admise....) d’extensionnalité (égalité d’ensembles)
  • Axiomes de construction :
    • Axiome de la paire (En mathématiques, l'axiome de la paire est l'un des axiomes de la théorie axiomatique des ensembles, plus précisément des théories des ensembles de Zermelo et de Zermelo-Fraenkel.)
    • Axiome de la réunion (Dans la théorie axiomatique des ensembles et dans les branches de la logique, des mathématiques, et de l'informatique, l'axiome de la réunion est l'un des axiomes de...)
    • Axiome des parties
    • Axiome de compréhension

Théorie ZF

  • Axiome de remplacement

Théorie ZFC (En mathématiques, l'abréviation ZF désigne la théorie de Zermelo-Fraenkel, ZFC quand elle comprend l'axiome du choix, théorie axiomatique des ensembles la plus couramment utilisée en mathématiques contemporaines. Bien que la...)

  • Axiome de choix

Autres axiomes

  • Axiome de fondation (L'axiome de fondation, encore appelé axiome de régularité, est l'un des axiomes de la théorie axiomatique des ensembles. Introduit en 1925 par John von Neumann, il joue un grand rôle dans cette théorie,...)
  • Axiomes de grands cardinaux
Page générée en 0.026 seconde(s) - site hébergé chez Amen
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
Ce site est édité par Techno-Science.net - A propos - Informations légales
Partenaire: HD-Numérique