Axiome
Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Introduction

Un axiome (du grec ancien αξιωμα/axioma, « considéré comme digne, convenable, évident en soi ») désigne une vérité indémontrable qui doit être admise. Pour certains philosophes grecs de l'Antiquité, un axiome (Un axiome (du grec ancien αξιωμα/axioma, « considéré comme digne, convenable, évident en soi ») désigne une vérité...) était une affirmation qu'ils considéraient comme évidente et qui n'avait nul besoin (Les besoins se situent au niveau de l'interaction entre l'individu et l'environnement. Il est souvent fait un classement des besoins humains en trois...) de preuve.

Le mot vient de αξιοειν (axioein), signifiant « considéré comme digne », lui-même dérivé de αξιος (axios), signifiant « digne ».

Description

Épistémologique

En épistémologie, un axiome est une vérité évidente en soi sur laquelle une autre connaissance peut se reposer, autrement dit peut être construite dessus. Précisons que tous les épistémologues n'admettent pas que les axiomes, dans ce sens (SENS (Strategies for Engineered Negligible Senescence) est un projet scientifique qui a pour but l'extension radicale de l'espérance de vie humaine. Par une évolution...) du terme, existent. Dans certains courants philosophiques, comme l'objectivisme, le mot axiome a une connotation particulière. Un énoncé est axiomatique s'il est impossible de le nier sans se contredire. Exemple : « Il existe une vérité absolue » ou « Le langage existe » sont des axiomes.

Mathématique (Les mathématiques constituent un domaine de connaissances abstraites construites à l'aide de raisonnements logiques sur des concepts tels que les nombres, les figures, les structures et les transformations. Les...)

En mathématiques, le mot axiome désignait une proposition qui est évidente en soi dans la tradition mathématique grecque, comme dans les Éléments d'Euclide (Euclide, en grec ancien Εὐκλείδης Eukleidês (né vers -325, mort vers -265 à Alexandrie) est un mathématicien de la...). L'axiome est utilisé désormais, en logique mathématique (La logique mathématique est née à la fin du XIXe siècle de la logique au sens philosophique du terme. Ses débuts furent marqués par la rencontre entre deux idées nouvelles :), pour désigner une vérité première, à l'intérieur d'une théorie (Le mot théorie vient du mot grec theorein, qui signifie « contempler, observer, examiner ». Dans le langage courant, une théorie est une idée ou une connaissance spéculative, souvent basée sur...). L'ensemble (En théorie des ensembles, un ensemble désigne intuitivement une collection d’objets (les éléments de l'ensemble), « une multitude qui peut être comprise comme un tout », comme...) des axiomes d'une théorie est appelé axiomatique ou théorie axiomatique. Cette axiomatique doit être non-contradictoire ; c'est sa seule contrainte. Cette axiomatique définit la théorie ; ce qui signifie que l'axiome ne peut être remis en cause à l'intérieur de cette théorie, on dit alors que cette théorie est consistante. Un axiome représente donc plutôt un point (Graphie) de départ dans un système de logique (La logique (du grec logikê, dérivé de logos (λόγος), terme inventé par Xénocrate signifiant à la fois raison, langage, et raisonnement) est dans une...) et il peut être choisi arbitrairement. La pertinence d'une théorie dépend de la pertinence de ses axiomes et de son interprétation. En réalité, c'est de la non cohérence de son interprétation que vient la réfutation de la théorie non-contradictoire et, par voie de conséquence, de son axiomatique. L'axiome est donc à la logique mathématique, ce qu'est le postulat à la physique théorique (La physique théorique est la branche de la physique qui étudie l’aspect théorique des lois physiques et en développe le formalisme mathématique.). Des axiomes servent (Servent est la contraction du mot serveur et client.) de base élémentaire pour tout (Le tout compris comme ensemble de ce qui existe est souvent interprété comme le monde ou l'univers.) système de logique formelle. Par exemple, on peut définir une arithmétique (L'arithmétique est une branche des mathématiques qui comprend la partie de la théorie des nombres qui utilise des méthodes de la géométrie algébrique et de la théorie des groupes. On l'appelle plus...) simple, comprenant un ensemble de 'nombre (La notion de nombre en linguistique est traitée à l’article « Nombre grammatical ».)' et une loi de composition interne (L’algèbre est la branche des mathématiques qui s’intéresse aux ensembles et aux opérations qui peuvent s’y effectuer. Elle recherche les conséquences...) + à cet ensemble, en posant (en s'inspirant un peu de Peano) :

  1. un nombre noté 0 existe
  2. tout nombre X a un successeur noté succ(X)
  3. X+0 = X
  4. succ(X) + Y = X + succ(Y)

Beaucoup de théorèmes peuvent être démontrés à partir de ces axiomes.

En utilisant ces axiomes, et en définissant les mots usuels 1, 2, 3, et ainsi de suite pour désigner les successeurs de 0 : succ(0), succ(succ(0)), succ(succ(succ(0))) respectivement, nous pouvons démontrer ce qui suit:

succ(X) = X + 1 (axiome 4 et 3)

et

1 + 2 = 1 + succ(1) Expansion de l'abréviation (2 = succ(1))
1 + 2 = succ(1) + 1 Axiome 4
1 + 2 = 2 + 1 Expansion de l'abréviation (2 = succ(1))
1 + 2 = 2 + succ(0) Expansion de l'abréviation (1 = succ(0))
1 + 2 = 2 + 1 = succ(2) + 0 = 0 + succ(2) Axiome 4
1 + 2 = 3 = 0 + 3 Axiome 3 et utilisation de l'abréviation (succ(2) = 3)
0 + 1 = 1 + 0 = 1 Axiome 4 et 3 (1+0=1)
X+ succ(X)=succ(X) +X pour tout X Axiome 4.

Tout résultat que nous pouvons déduire des axiomes n'a pas besoin d'être un axiome. Toute affirmation qui ne peut être déduite des axiomes et dont la négation ne peut pas non plus se déduire de ces mêmes axiomes, peut raisonnablement être ajoutée comme axiome.

Probablement le plus ancien et aussi le plus célèbre système d'axiomes est celui des 4+1 postulats d'Euclide. Ceux-ci s'avèrent être assez incomplets actuellement, et beaucoup plus de postulats sont nécessaires pour caractériser complètement (Le complètement ou complètement automatique, ou encore par anglicisme complétion ou autocomplétion, est une fonctionnalité informatique permettant à l'utilisateur de limiter la quantité d'informations...) la géométrie (La géométrie est la partie des mathématiques qui étudie les figures de l'espace de dimension 3 (géométrie euclidienne) et, depuis le XVIIIe siècle, les figures...) d'Euclide (Hilbert en a utilisé 26 dans son axiomatique de la géométrie euclidienne).

Chacun de ces choix nous donne différentes formes alternatives (Alternatives (titre original : Destiny Three Times) est un roman de Fritz Leiber publié en 1945.) de géométrie, dans lesquelles les mesures des angles intérieurs d'un triangle (En géométrie euclidienne, un triangle est une figure plane, formée par trois points et par les trois segments qui les relient. La dénomination de...) s'ajoutent pour donner une valeur inférieure, égale ou supérieure à la mesure de l'angle (En géométrie, la notion générale d'angle se décline en plusieurs concepts apparentés.) formé par une droite (angle plat). Ces géométries sont connues en tant que géométries elliptiques, euclidiennes et hyperboliques respectivement. La relativité générale (La relativité générale, fondée sur le principe de covariance générale qui étend le principe de relativité aux référentiels non-inertiels, est une théorie relativiste de la...) est basée essentiellement sur une affirmation que la masse (Le terme masse est utilisé pour désigner deux grandeurs attachées à un corps : l'une quantifie l'inertie du corps (la masse inerte) et l'autre...) donne à l'espace une courbure (Intuitivement, courbe s'oppose à droit : la courbure d'un objet géométrique est une mesure quantitative du caractère « plus ou moins courbé » de cet objet. Par...), c'est-à-dire que l'espace physique (La physique (du grec φυσις, la nature) est étymologiquement la « science de la nature ». Dans un sens général et ancien,...) n'est pas euclidien.

Le fait que des formes alternatives de géométrie pouvaient exister, préoccupa beaucoup les mathématiciens du XIXe siècle et dans des développements semblables, par exemple en algèbre (L'algèbre, mot d'origine arabe al-jabr (الجبر), est la branche des mathématiques qui étudie, d'une façon générale, les structures algébriques.) booléenne, ils faisaient généralement des efforts pour déduire les résultats des systèmes d'arithmétique ordinaire. Galois a montré que tous ces efforts étaient en grande partie gaspillés, et que les développements parallèles des systèmes axiomatiques pouvaient être utilisés à bon escient, de la même manière qu'il résolut algébriquement beaucoup de problèmes de géométrie classique.

Finalement, les similitudes abstraites existant entre les systèmes algébriques furent perçues comme plus importantes que les détails et l'algèbre moderne était née.

Au XXe siècle, le théorème (Un théorème est une proposition qui peut être mathématiquement démontrée, c'est-à-dire une assertion qui peut être établie comme vraie au travers d'un raisonnement logique construit...) d'incomplétude (On parle de complétude en mathématiques dans des sens très différents. On dit d'un objet mathématiques qu'il est complet pour exprimer que rien ne peut lui être ajouté, en un sens qu'il faut...) de Gödel prouve qu'aucune liste explicite d'axiomes suffisante pour déduire le principe de récurrence sur les entiers ne pourrait être à la fois complète (chaque proposition peut être démontrée ou réfutée à l'intérieur du système) et consistante (aucune proposition ne peut être à la fois démontrée et réfutée).

Page générée en 0.007 seconde(s) - site hébergé chez Amen
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
Ce site est édité par Techno-Science.net - A propos - Informations légales
Partenaire: HD-Numérique