Ensemble d'arrivée - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs est disponible ici.

Pour une fonction donnée fA → B, l'ensemble B est appelé l'ensemble d'arrivée ou codomaine de f.

L'ensemble d'arrivée ne doit pas être confondu avec l'image de f, f(A), qui est en général seulement un sous-ensemble de B.

Exemple

Soit la fonction f sur l'ensemble des nombres réels définie par

\begin{matrix} f & : & \mathbb R & \rightarrow & \mathbb R\\   &   &  x        &  \mapsto    & x^2\\ \end{matrix}

L'ensemble d'arrivée de f est \mathbb R , mais clairement f(x) ne prend jamais de valeurs négatives. L'image est en fait l'ensemble \mathbb R_+ des réels positifs, l'intervalle \left[0, +\infty\right[ .

f\left(\mathbb R\right)=\left[0, +\infty\right[

Nous aurions pu définir la fonction g ainsi

Tandis que f et g ont le même effet quand elles sont appliquées à un nombre réel donné, les fonctions sont différentes puisqu'elles ont des ensembles d'arrivée différents.

L'ensemble d'arrivée peut avoir un effet sur la surjectivité d'une fonction; dans notre exemple, g est une surjection alors que f ne l'est pas.

Voir aussi: Ensemble de définition

Page générée en 0.084 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise