Sous-ensemble - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Introduction

L'ensemble A est inclus dans l'ensemble B. On dit que A est sous-ensemble de B, ou que B est sur-ensemble de A.

En mathématiques, un ensemble A est un sous-ensemble ou une partie d’un ensemble B, ou encore B est sur-ensemble de A, si tout élément du sous-ensemble A est aussi élément du sur-ensemble B. Il peut par contre y avoir des éléments de B qui ne sont pas éléments de A (voir le diagramme à droite). La relation entre A et B s'appelle l'inclusion.

Définitions

Inclusion, sous-ensembles et sur-ensembles

Soient deux ensembles A et B. Par définition, A est inclus dans B si tout élément de A est un élément de B. En notation symbolique, l’inclusion est notée le plus souvent « ⊂ ». On a alors par définition (« ⇒ » désigne l'implication logique) :

AB    signifie    ∀ x (xAxB) .

Par conséquent l'ensemble A n'est pas inclus dans l'ensemble B si et seulement s'il existe un élément de A qui n'appartient pas à B :

AB    si et seulement si    ∃ x (xA et xB) .

Par exemple l'ensemble des entiers naturels non nuls N* est inclus dans l'ensemble des entiers naturels N, de même que l'ensemble des entiers naturels pairs 2N, mais 2N n'est pas inclus dans N* car 0 ∈ 2N, mais 0 ∉ N* :

N*N, 2NN, 2NN*.

On peut remarquer que, comme il existe des entiers naturels non nuls qui ne sont pas pairs, 1 par exemple, N* n'est pas non plus inclus dans 2N : N* ⊄ 2N. On dit alors que ces deux ensembles ne sont pas comparables pour l'inclusion.

L'inclusion peut se dire de plusieurs façons, « AB » peut aussi se lire :

  • « A est contenu dans B »,
  • « A est une partie de B »,
  • ou « A est un sous-ensemble de B ».

et peut aussi s'écrire « BA », qui se lit :

  • « B inclut A »,
  • « B contient A »,
  • « B est une extension de A »,
  • ou « B est un sur-ensemble de A ».

Il faut prendre garde cependant à l'usage du terme « contient » qui est ambigu, il peut parfois se référer à l'appartenance : A contient x peut parfois signifier que Ax (c'est-à-dire xA).

Définition en compréhension

Une propriété des éléments d'un ensemble définit un sous-ensemble de celui-ci. Ainsi, en reprenant l'un des exemples ci-dessus, la propriété « être pair » définit, sur l'ensemble des entiers naturels N, l'ensemble 2N des entiers pairs. On dit que l'ensemble a été défini par compréhension et on note :

2N={nN | n est pair} = {nN | (∃qN) n=2q}

Toute propriété (quand on l'exprime dans un langage précis on parle de prédicat de ce langage) définit par compréhension un sous-ensemble d'un ensemble donné.

Inclusion stricte et sous-ensembles propres

Remarquons qu'un ensemble est toujours sous-ensemble de lui-même (voir proposition 2 ci-dessous). Il peut être nécessaire d'exclure ce cas et de ne considérer que des sous-ensembles différents de l'ensemble lui-même. C'est pourquoi on définit une inclusion stricte, notée « ⊊ » . Un ensemble A est strictement inclus dans un ensemble B si et seulement si A est inclus dans B sans lui être égal :

A \subsetneq B   signifie    A \subset B et A \neq B

L'inclusion habituelle peut alors être qualifiée d’inclusion large, s'il y a risque d'ambiguïté.

À part lui-même, un ensemble compte toujours au moins un autre sous-ensemble : l'ensemble vide. Ces deux sous-ensembles sont parfois dits « triviaux ».

Une partie de A distincte de A lui-même est appelée un sous-ensemble propre de A.

Ainsi, en reprenant l'exemple du paragraphe précédent, l'ensemble des entiers naturels pairs 2N, comme l'ensemble des entiers naturels non nuls N*, sont des sous-ensembles propres de l'ensemble des entiers naturels N.

Ensemble des parties

L'ensemble de tous les sous-ensembles d'un ensemble E donné est appelé ensemble des parties de E, et noté habituellement « \mathcal P(E) », ou (écriture gothique) « \ _\mathfrak P (E) », voire simplement « P(E) » (lire dans tous les cas « P de E » ).
On a ainsi :

X\mathcal P(E)   si et seulement si   XE.

Par exemple si A = { a, b }, alors \mathcal P(A) = { Ø, { a }, { b }, A }.

Dans ce cas on aura par exemple aA, donc {a} ⊂ A, c'est-à-dire {a} ∈ \mathcal P(A).

Les propriétés de l'ensemble des parties, en particulier celles ayant trait à la cardinalité, sont détaillées dans l'article ensemble des parties d'un ensemble. Pour le cas fini, qui relève de la combinatoire, voir aussi l'article combinaison.

Fonction caractéristique

Un sous-ensemble A d'un ensemble E peut être défini par sa fonction caractéristique   χA \ _{ : \ E \rightarrow \{ 0 , 1 \} } , définie par χA(x) vaut 1 si x est élément de A, et 0 sinon :

 \forall x \in E[ \chi_A(x) = 1  \Leftrightarrow  x \in A ]

et donc (χA étant à valeurs dans {0,1})

 \forall x \in E[\chi_A( x) = 0  \Leftrightarrow  x \not\in A ]

Réciproquement toute fonction χ de E dans {0,1} définit un sous-ensemble de E qui est {xE | χ(x)=1}. On a donc une correspondance bijective entre les sous-ensembles de E et les fonctions de E dans {0,1}, c'est-à-dire entre \ _\mathcal P(E) et {0,1}E.

Page générée en 0.586 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise