Computationnalisme - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Fonctionnalisme, matérialisme, physicalisme et le problème des qualia

Dans cette mesure, le fonctionnalisme, selon Hilary Putnam (1992), n'est pas nécessairement un matérialisme : les états mentaux peuvent être accrochés à différents supports, que ce soit le cerveau ou le hardware et le software d'un ordinateur, ou tout autre support. Sur la différence entre fonctionnalisme et matérialisme, et la possibilité d'adopter une théorie dualiste tout en maintenant le fonctionnalisme, Laberge (ibid.) cite Hilary Putnam, « La nature des états mentaux », in Les Études philosophiques, juillet/septembre 1992, p.323-335.. Ainsi, même si la pensée s'appuie sur un support matériel (le cerveau), on peut alors l'étudier sans se soucier de ce support (contrairement à une certaine approche matérialiste voire réductionniste courante dans les neurosciences) : une même idée peut en effet être exprimée sur des supports physiques très différents (par la voix, sur papier, sur un mur, sur un ordinateur, etc.) Toutefois, dans la mesure où le principe de causalité est le plus souvent associé à la matière, la plupart des fonctionnalistes sont aussi matérialistes.

Dans cette mesure, le fonctionnalisme s'apparente à un behaviorisme méthodologique : contrairement au behaviorisme ontologique, il n'affirme pas qu'il n'y a pas d'états mentaux. Mais, de même que le behaviorisme méthodologique, il laisse de côté les aspects subjectifs, qualitatifs, des états mentaux (ou qualia), c'est-à-dire l'ensemble des expériences subjectives qui peut faire l'objet, par exemple, d'un poème ou d'une déclaration amoureuse, ou du simple fait d'aimer telle couleur. On parle ainsi de « fonctionnalisme de la boîte noire ».

Toutefois, la thèse de Putnam a été attaquée par John Searle, l'un des critiques les plus importants du computationnalisme. Selon lui, non seulement il est impossible, comme le prétend Putnam, de concilier le fonctionnalisme avec un dualisme à propos des états mentaux et des états physiques (dualisme pensée/cerveau), mais la tentative même du computationnalisme de concilier l'intentionnalisme réalisme avec le physicalisme est voué à l'échec. En effet, « le fonctionnaliste insiste pour qu’on comprenne bien qu’il ne dit pas qu’une croyance est un état mental irréductible qui, en plus a les relations causales qui sont les siennes, mais plutôt qu’une croyance ne consiste qu’en ce qu’elle a ces relations causales. ».

L'alternative connexionniste

À la fin des années 1980, l'approche connexioniste a commencé à concurrencer le computationnalisme, dont le principal titre de légitimité, selon Fodor, était qu'il était la seule théorie apte à rendre compte de l'évolution des sciences cognitives et des modèles implicites utilisés par celles-ci. Le connexionnisme tente d'élaborer des modèles de compréhension des processus cognitifs qui ne passent pas par le simple usage et application de règles. Précédé par quelques travaux innovateurs de Wiener et de Rosenblatt, l'approche connexionniste a surgi sur la scène philosophique avec la publication de l'ouvrage de Rumelhart et McClelland, Parallel Distributed Processing (1986).

Critiques de l'hypothèse computationnaliste

Diverses critiques ont été adressées à la théorie computationnaliste, qui tournent toutes autour de la question des règles. En effet, le computationnalisme postule qu'on peut assimiler la pensée à un système d'application de règles, ce qui permet en retour d'identifier des fonctions informatiques complexes comme étant un équivalent de pensée. Ces critiques ne sont pas forcément fatales au computationnalisme, mais en limitent l'extension à certains processus déterminés de pensée, qui pourraient être modalisés selon un système de règles.

Qu'est-ce qui est calculable ?

Une critique ancienne provient de John Lucas (1961), qui affirme que le théorème d'incomplétude de Gödel pose des problèmes insurmontables à l'analogie esprit/machine. Cet argument a été développé par Roger Penrose, selon qui un mathématicien humain est capable de comprendre plus et de démontrer plus que ce qui est simplement calculable. Cela a fait l'objet de nombreux débats (David Lewis, Solomon Feferman, etc.).

Un autre argument a été formulé par Hubert Dreyfus dans What Computers Can't Do (1972). Fin connaisseur de Heidegger et de la phénoménologie, Dreyfus souligne ainsi la différence centrale qui distingue le processus cognitif utilisé lorsqu'un novice apprend une compétence et lorsqu'un expert agit. Ainsi, un joueur d'échec débutant applique un système de règles (par exemple, avancer le pion de deux cases ou occuper le centre). Mais un champion d'échecs n'applique pas de règles : il « voit » le « coup juste ». L'application de règles, au cœur du computationnalisme, serait ainsi le propre des processus cognitifs limités. Il est difficile, en particulier, de transformer une compétence experte en algorithme, lorsque cette compétence tire ses ressources d'une connaissance générale étrangère au domaine du problème visé.

Les tentatives visant à construire des réseaux connectionnistes, ou celle de Rodney Brooks visant à construire une intelligence artificielle simple sur le modèle des insectes, sont une réponse partielle aux objections de Dreyfus. Ce dernier considère en effet ces tentatives comme plus prometteuses, et pense que la théorie de Walter Freeman répond à certaines formulations de Merleau-Ponty à propos de l'apprentissage d'une compétence. Il reste toutefois sceptique, considérant dans What Computers Still Can't Do (1992) qu'on ne fait que donner une chance, méritée, d'échouer, au connexionnisme.

Il faut toutefois souligner que, si la théorie computationnaliste a souvent été interprétée comme visant à rendre compte de l'ensemble, ou presque, des processus cognitifs, y compris les processus infraconscients tels que la vision (David Marr), selon Jerry Fodor (1984 et 2000), seuls les « raisonnements modulaires », par opposition aux « raisonnements globaux », sont susceptibles d'être appréhendés par ce modèle. Dans The Mind Doesn't Work That Way (2000), Fodor affirme dès l'introduction qu'il n'avait jamais imaginé qu'on puisse interpréter sa théorie de façon à croire qu'elle rendrait compte de la pensée en général.

Peut-on assimiler calculabilité et compréhension ?

L'une des plus puissantes objections a été formulée par John Searle (1980), à travers l'expérience de pensée de la chambre chinoise, qui se veut une réponse au test de Turing. Il s'agit de se demander si la calculabilité (computation) peut suffire à expliquer la compréhension. Par son test, Turing visait à substituer à la question « les machines peuvent-elles penser ? » la question de savoir si elles peuvent réussir un examen, appelé « jeu de l'imitation », dans lequel les personnes examinées doivent déterminer, sur le seul fondement des réponses qu'on leur donne, si leur interlocuteur invisible est une personne ou une machine (voir le programme ELIZA).

Or, Searle affirme qu'on ne peut extrapoler de la réussite au test de Turing la possibilité de penser. L'expérience de la chambre chinoise est simple : il suffit d'imaginer qu'on enferme une personne dans une salle, et qu'il ne puisse communiquer à l'extérieur qu'à l'aide de symboles chinois, langue qu'il ne comprend pas. Un cahier stipulant certaines règles de manipulation de ces symboles lui est fourni. Il s'agit ainsi de l'équivalent du test de Turing : ce dispositif imite un ordinateur digital qui reçoit des input symboliques et les transforme en output symboliques à l'aide d'un système de règles, qui peuvent être appliquées à des information non-sémantiques, qui seraient exclusivement syntaxiques ou symboliques. Or, Searle conclut qu'on ne peut évidemment pas parler d'une compréhension, puisqu'on a stipulé dès le départ que la personne ne comprenait pas le chinois ; ce qui ne l'empêchait pas de communiquer adéquatement à l'aide du système de règles. On ne peut donc que simuler la compétence linguistique par une machine, mais non pas la dupliquer.

Deux lignes de réponse ont été adressées à l'objection de Searle. Certains sont allés jusqu'à définir la compréhension en termes fonctionnalistes : puisque le dispositif de la Chambre chinoise fonctionne, il faut dire qu'il suffit à la compréhension. L'autre type de réponse concède que Searle a raison, mais tente de complexifier le schéma en ajoutant de nouveaux traits, par exemple la possibilité d'apprendre de nouvelles règles, la faculté d'interagir avec son environnement, etc., qui permettrait de parler d'une compréhension véritable, et non d'une simple simulation. Searle a alors adapté son argument pour prendre en compte ces nouvelles facultés, tout en continuant à nier qu'une machine ne puisse faire autre chose que simuler la compréhension.

Page générée en 0.104 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise