Espaces métrisables
Partant d'un espace topologique, on peut se demander s'il est métrisable, c'est-à-dire s'il existe une distance qui induit sa topologie. Plusieurs conditions suffisantes pour cela ont été trouvées.
- La première réellement utile est due à Urysohn ; elle dit que tout espace topologique à base dénombrable et régulier est métrisable. (Note historique : cette forme de la condition a en fait été prouvée par Tychonov en 1926. Ce qu'Urysohn avait trouvé, dans un article publié en 1925, était que tout espace topologique à base dénombrable et normal est métrisable.) Par exemple, toute variété à base dénombrable est métrisable. Egalement un compact est métrisable si et seulement s'il est à base dénombrable.
- Cette condition suffisante d'Urysohn (régularité + base dénombrable) a été transformée en une condition nécessaire et suffisante (régularité + base dénombrablement localement finie) par Bing, Nagata et Smirnov
- Smirnov a aussi prouvé qu'un espace est métrisable si et seulement s'il est paracompact et localement métrisable (un espace est dit localement métrisable si chaque point a un voisinage métrisable). En particulier, une variété est métrisable si et seulement si elle est paracompacte.
Équivalence d'espaces métriques
En comparant deux espaces métriques il est possible de distinguer différents degrés d'équivalence. Pour préserver a minima la structure topologique induite par la métrique, une fonction continue entre les deux est requise.
Soit deux espaces métriques (M1, d1) et (M2, d2). M1 et M2 sont appelés
- topologiquement isomorphes (ou homéomorphes) s'il existe un homéomorphisme entre eux.
- uniformément isomorphes s'il existe un isomorphisme uniforme entre eux.
- isométriquement isomorphes s'il existe un isométrie bijective entre eux. Dans ce cas les deux espaces sont essentiellement identiques. Une isométrie est une fonction f : M1 → M2 qui préserve les distances : d2(f(x), f(y)) = d1(x, y) pour tout x, y dans M1. Les isométries sont forcément injectives.
- similaire s'il existe une constante positive k > 0 et une fonction bijective f, appelée similarité telle que f : M1 → M2 et d2(f(x), f(y)) = k d1(x, y) pour tout x, y dans M1.
- similaire (du second type) s'il existe une fonction bijective f, appelée similarité telle que f : M1 → M2 et d2(f(x), f(y)) = d2(f(u), f(v)) si et seulement si d1(x, y) = d1(u, v) pour tout x, y,u, v dans M1.
Dans le cas d'un espace euclidien avec la métrique usuelle, les deux notions de similarité sont équivalentes.