Les nombres de Carmichael peuvent être généralisés en utilisant les concepts de l'algèbre générale.
La définition ci-dessus énonce qu'un entier composé n est un nombre de Carmichael précisément lorsque la fonction nième puissance pn de l'anneau Zn des entiers modulo n dans lui-même est la fonction identité. L'identité est le seul Zn-endomorphisme d'algèbre sur Zn donc nous pouvons rétablir la définition en demandant que pn soit un endomorphisme d'algèbre de Zn. Comme ci-dessus, pn satisfait à la même propriétés quand n est premier.
La fonction nième puissance pn est aussi définie sur n'importe quel Zn-algèbre A. Un théorème énonce que n est premier si et seulement si toutes les fonctions telles que pn sont des endomorphismes d'algèbres.
Entre ces deux conditions se trouve la définition du nombre de Carmichael d'ordre m pour n'importe quel entier positif m comme n'importe quel nombre composé n tel que pn est un endomorphisme sur chaque Zn-algèbre qui peut être générée comme un Zn-module par m éléments. Les nombres de Carmichael d'ordre 1 sont simplement les nombres de Carmichael ordinaires.
Le critère de Korselt peut être généralisé aux nombres de Carmichael d'ordre supérieur, voir l'article de Howe ci-dessous.
Un argument heuristique, donné dans le même article, semble suggérer qu'il existe une infinité de nombres de Carmichael d'ordre m, quel que soit m. Néanmoins, on ne connaît aucun nombre de Carmichael d'ordre 3 ou plus.