Base (arithmétique) - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Introduction

En arithmétique, une base désigne la valeur dont les puissances successives interviennent dans l'écriture des nombres dans la numération N-adique, ces puissances définissant l'ordre de grandeur de chacune des positions occupées par les chiffres composant tout nombre. Par commodité, on utilise usuellement, pour les bases entières à partir de deux, un nombre de chiffres égal à la base. En effet, l'écriture d'un nombre en base N à l'aide de N chiffres allant de 0 à N-1 correspond à son développement en base N.

Numérations selon les cultures
Numération arabo-indienne
arabe
khmer
indienne
mongole
thaï
Numérations à l’origine chinoise
chinoise
japonaise
à bâtons
suzhou
Numérations alphabétiques
arménienne
cyrillique
d'Âryabhata
éthiopienne
hébraïque
grecque
tchouvache
Autres systèmes :
attique
brahmi
champs d'urnes
égyptienne
étrusque
forestière
inuite
maya
mésopotamienne
romaine
Notations positionnelles par base
Décimal (10)
2, 4, 8, 16, 32, 64
1, 3, 6, 9, 12, 20, 24, 30, 36, 60, plus…
v · d · m

Bases courantes

Certaines bases sont couramment employées :

  • la base 2 (système binaire), en électronique numérique et informatique,
  • la base 3 (système trinaire), dans les mêmes domaines, bien que moins fréquemment,
  • la base 8 (système octal), en informatique, davantage à l'échelle humaine que la base 2, aujourd'hui abandonnée au profit de la base 16. Il a été utilisé par les yuki,
  • la base 9 (système nonaire), davantage à l'échelle humaine que la base 3,
  • la base 10 (système décimal), la plus commune, aujourd'hui la référence dans le domaine des sciences,
  • la base 12 (système duodécimal), de manière embryonnaire, a été utilisé par les Égyptiens pour le compte en heures et mois,
  • la base 16 (système hexadécimal), en informatique, facilitant les conversions en base 2 en regroupant des chiffres binaires, 16 étant une puissance de 2,
  • la base 20 (système vigésimal) a été utilisée par les Mayas et les Aztèques, ainsi que de manière alternative en France (dont on garde en l'héritage pour quatre-vingt)
  • la base 60 (système sexagésimal), dans la mesure du temps et des angles, il a été utilisé par les Sumériens, les Akkadiens, puis les Babyloniens. (voir Numération babylonienne)
  • la base 150 ou base indienne, utilisée notamment dans la table astronomique appelée Table indienne d’al-Khawarizmi

De nombreuses bases sont, et ont été, aussi utilisées par différents peuples ; consulter Numération pour plus de détails.

Remarque : bien que peu utilisée, la base 30 a l'intérêt de pouvoir exprimer le résultat de la majorité des petites fractions (de la forme 2n.3p.5q) sans utiliser un nombre infini de chiffres après la virgule. La base 60 le permet également mais avec deux fois plus de chiffres différents, ce qui empêche d'utiliser les 10 chiffres et les 26 lettres pour représenter tous les chiffres.

Notations courantes

Pour n'importe quelle base, on a l'habitude de l'indiquer en indice du nombre. Par exemple 1001112 pour le nombre 100111 en base 2, ou encore 1728 pour le nombre 172 en base 8.

En plus de cette notation, il en existe d'autres, notamment employées en informatique.

  • Base 8 : on peut indiquer le nombre avec un zéro au début. Par exemple 0157 pour 1578.
  • Base 16 : on peut indiquer de diverses manières qu'un nombre est en hexadécimal (voir tableau ci-dessous). Une autre écriture courante est l'ajout du suffixe "h" à la fin du nombre, ce qui avec notre exemple donne AE4Fh.
Préfixe Exemple Langages
0x 0xAE4F C, C++, Java
$ $AE4F Pascal
&h &hAE4F Basic
Page générée en 0.149 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise