Biophoton - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Hypothèses sur la communication cellulaire

Dans les années 1970, le professeur Fritz-Albert Popp, alors assistant, et son équipe de recherche de l'université de Marbourg (Allemagne) montra que l'émission couvrait un large spectre de longueurs d'onde, de 200 à 800 nm. Popp avança que la radiation devait être à la fois semi–périodique et cohérente. Cette hypothèse n'a pas rencontré beaucoup de succès parmi les scientifiques qui avaient étudié le dossier. Pourtant, Popp et son équipe ont construit, testé, déposé et mis sur le marché un appareil pour mesurer les émissions de biophotons et déterminer ainsi la maturité et la valeur nutritive des fruits et légumes.

Les Russes, les Allemands, et d'autres spécialistes en biophotonique, adoptant souvent le terme de « biophoton » de Popp, ont bâti une théorie — comme Gurwitsch — prévoyant que les biophotons pouvaient être impliqués dans différentes fonctions de la cellule, comme la mitose, et même qu'ils pouvaient être produits et détectés par l'ADN du noyau cellulaire. En 1974, le docteur V.P.Kazmacheyev annonça que son équipe de recherche de Novosibirsk avait détecté des communications inter–cellulaires établies au moyen de radiations de biophotons.

Les promoteurs de cette théorie prétendent en plus que des études ont montré que des cellules endommagées émettaient plus de biophotons que des cellules saines et que des organismes lésés émettaient de la même façon une lumière plus intense, ce qui a été interprété comme une sorte de « signal de détresse ». Cependant cette interprétation est sujette à débat car les cellules lésées sont également le siège d'un métabolisme accru qui résulte en un plus grand stress oxydant, ce qui en fin de compte est l'ultime source de l'émission des photons. L'étude publiée par Masaki Kobayashi et ses collaborateurs en juillet 2009 a démontré que si l'émission de biophotons est bien liée au métabolisme, elle n'est pas corrélée topologiquement à la température ni à l'émission de rayonnements infrarouges. En effet, contrairement à ce qui a été constaté en imagerie infrarouge lors de l'analyse, le torse produit une émission moindre de biophotons que le visage, ce que les auteurs expliquent par un taux de mélanine, un fluorochrome, différent, moindre sur le torse que sur le visage. Si cette hypothèse est correcte ce serait la preuve que le stress oxydant et les réactions résultant des radicaux libres ne se traduit pas systématiquement par une émission de biophotons mais que celle-ci requiert la présence de facteurs additionnels pour se manifester de cette forme. Que cela constitue un « signal de détresse » ou plus simplement un bruit de fond résultant de réactions biochimiques exacerbées reste donc encore à être démontré.

Une des hypothèses avancées est que cette forme de communication apparaît lorsque plusieurs organismes unicellulaires s'unissent pour former un organisme plus complexe et utilisent les biophotons comme une sorte de système nerveux primitif. Cette hypothèse a cependant été invalidée lorsqu'il a été constaté que d'ordinaires bactéries émettent également des biophotons, ce qui renforce la thèse simplement métabolique et liée au stress oxydant. Selon une autre hypothèse, cette forme de signal biophotonique, ayant son origine dans le sang, continue de jouer un rôle dans la réception, la transmission et le traitement des informations électromagnétiques.

Ces hypothèses laissent entendre que les biophotons sont importants dans le développement des structures organiques complexes telles que les organes ou les organismes. Pourtant, en raison des difficultés que l'on rencontre pour isoler les effets pressentis des biophotons parmi les nombreuses autres interactions entre molécules, on ne peut pas établir de théorie facilement vérifiable.

Concernant le rôle joué par les biophotons, on peut également signaler l'objection suivante : la plupart des organismes baignent dans de la lumière (lumière du jour, ou même lueur nocturne) dont l'intensité, relativement très forte, parasite l'émission ultra–faible de biophotons rendant ainsi toute forme de communication impossible. Bien que ceci n'empêche pas un biophoton de se signaler dans des séquences de longueurs d'onde spécifiques, ou d'être opérationnel dans les tissus profonds isolés de la lumière — dans le cerveau humain, par exemple, qui contient des protéines photosensibles — il reste bien peu d'arguments dans la littérature scientifique pour défendre l'existence d'un tel système de communication.

Page générée en 0.104 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise