L'ellipse peut être définie comme le lieu des points dont la somme des distances à deux points fixes appelés foyers de l'ellipse est constante et égale à une valeur fixée. Cette définition reste valable dans le cas du cercle, dans lequel les foyers sont confondus.
L'hyperbole peut être définie comme le lieu des points dont la valeur absolue de la différence des distances à deux points fixes appelés foyers de l'hyperbole est constante et égale à une valeur fixée.
La parabole n'a pas de définition bifocale.
Les paraboles admettent un et un seul couple foyer/directrice au sens de la définition monofocale, et l'excentricité correspondante vaut 1.
Ellipses et hyperboles admettent exactement deux couples foyer/directrice au sens de la définition monofocale, et ceux-ci correspondent à une même valeur de l'excentricité. Ils sont symétriques par rapport au centre de l'ellipse ou au point d'intersection des asymptotes de l'hyperbole. Ces foyers sont les points intervenant dans la définition bifocale.
Les foyers et les directrices des coniques peuvent être déterminés géométriquement dans le cadre de la définition des coniques comme intersection d'un cône et d'un plan ne passant pas par le centre de celui-ci.
Il existe, selon l'orientation du plan par rapport à l'axe du cône, une (cas des paraboles) ou deux (cas des ellipses et des hyperboles) sphères tangentes à la fois au plan et au cône; ce sont des sphères centrées sur l'axe, situées dans un même demi-cône (cas des ellipses) ou dans des demi-cônes opposés (cas des hyperboles).
Chacune de ces sphères définit l'un des foyers de la conique (c'est le point de tangence de la sphère et du plan) ainsi que la droite directrice associée (c'est l'intersection du plan de la conique et du plan contenant le cercle de tangence de la sphère et du cône).
C'est le théorème de DANDELIN