D’une manière générale, les choix méthodologiques de l’écoéthologie sont intimement liés aux contraintes théoriques de cette discipline. Le but est de découvrir les mécanismes cognitifs sous-tendant des phénomènes adaptatifs, propres à la niche écologique de l’espèce étudiée : ainsi les scientifiques doivent-ils comparer soit des espèces taxonomiquement proches et confrontés à des problèmes cognitifs différents, soit des espèces éloignées, mais confrontées à des problèmes cognitifs similaires (par exemple dans une même niche écologique). Cela dit, il s’agit toujours de tester une hypothèse de départ, que ce soit par une démarche expérimentale ou par une observation de terrain.
Les écoéthologistes utilisent différents moyens pour collecter des données. Il existe quatre types d’échantillonnage. Le premier, l’échantillonnage par balayage, consiste à étudier un facteur en réalisant un instantané d’une situation particulière, à un instant t (comme la disposition des animaux au sein d’un groupe). Dans l’échantillonnage centré, l’observateur se focalise à tour de rôle sur le comportement de tous les animaux d’un échantillon, et peut recommencer un certain nombre de fois jusqu’à obtenir des données suffisamment fiables (par exemple, il peut être instructif d’étudier le comportement d’un certain nombre d’animaux au cours des rites sexuels). L’échantillonnage continu se focalise sur un seul individu, pour en étudier tous les traits comportementaux sur une assez longue période. Enfin, l’échantillonnage par randomisation (« au hasard ») consiste à enregistrer tous les événements du comportement, de n’importe quel sujet et dans n’importe quel ordre : son avantage est d’éviter les biais dus à une sélection (consciente ou inconsciente) des variables par l’observateur, mais son inconvénient est de manquer de précision et d’être moins méthodique que les précédents échantillonnages.
Une fois qu’une hypothèse générale (qui peut se décliner en plusieurs hypothèses opérationnelles) a été formulée, elle peut être testée soit par expérimentation, soit par analyse comparative (fondée sur des observations naturalistes), soit par simulation sur ordinateur : dans les deux premiers cas, la démarche doit aboutir à une modélisation théorique ; dans le dernier cas, les résultats de la simulation demandent à être recoupés par des observations et des mesures. Prenons une hypothèse appelant des observations de terrain : le saut sur place chez la gazelle de Thomson. Nous allons voir que l’hypothèse se constitue à la fois comme interprétation et comme prédiction. Alcock (1993) rapporte que, après avoir repéré un prédateur, la gazelle saute sur place en exhibant son miroir fessier de pelage blanc ; il imagine cinq hypothèses possibles : le signal d’alarme à destination de ses congénères, l’effet de confusion (en s’enfuyant toutes, les gazelles empêchent le prédateur de se concentrer sur une proie en particulier), la cohésion sociale (les autres gazelles, prévenues, peuvent s’enfuir de manière coordonnée), le signal de non-profitabilité (la gazelle indique au prédateur que l’effet de surprise est raté et qu’il aura du mal à la rattraper), l’observation (en sautant, la gazelle accroît son champ de vision et peut repérer davantage de prédateurs). Or, les études de terrain ont établi, par élimination, que la bonne hypothèse est le signal de non-profitabilité. En effet, les gazelles solitaires sautant également sur place, on peut écarter les deux premières conjectures. De plus, si ce type de saut avait pour fonction la cohésion sociale, la gazelle, même éloignée du groupe, devrait diriger son miroir fessier vers ses congénères, ce qui n’est pas le cas. Enfin, les gazelles sautent sur place aussi bien dans l’herbe haute que dans la savane, ce qui écarte l’idée que le saut serve une meilleure observation. La bonne interprétation du comportement permet ainsi une prédiction : le saut sur place devrait avoir pour conséquence de décourager les prédateurs, ce que l’on observe effectivement.
Un deuxième exemple illustre la démarche d’aller-retour entre simulation et observation : la collecte de moules chez l’huîtrier pie Haematopus ostrolegus. Le calcul coûts/bénéfices (quantité de calories par moule divisée par le temps pris pour l’ouvrir) fait penser que l’oiseau doit préférer les plus gros mollusques. Or il n’en est rien : s’il sélectionne des moules relativement grosses, ce ne sont pas les plus grosses. Pour quelle raison ? On ajoute alors une nouvelle contrainte pour tenter de modéliser le comportement de l’huîtrier-pie, en supposant que la difficulté pour ouvrir les coquillages augmente avec la taille. En comparant le premier modèle (profit maximal des grosses moules) et le second (profit limité par la difficulté d’ouvrir les plus grosses), on s’aperçoit que la nouvelle courbe prédit que les huîtriers-pies devraient préférer les moules d’une taille avoisinant les 50 mm. A nouveau, l’expérience dément cette prédiction : l’échantillonnage fait ressortir que l’oiseau sélectionne les mollusques mesurant entre 35 et 40 mm. En fait, en retournant à l’observation, on se rend compte qu’un facteur a été négligée : les plus grosses moules ne sont pas utilisables par les huîtriers-pies et ne peuvent donc pas rentrer dans la construction du modèle. Une fois cette correction réalisée, la valeur que prédit le nouveau modèle théorique devient conforme aux faits.